首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low generation amino‐group‐terminated poly(ester‐amine) dendrimers PEA1.0 (NH2)3 and PEA1.5 (NH2)8, and poly(amido‐amine) dendrimer PAMAM1.0 (NH2)4 were used as diglycidyl ether of bisphenol A (DGEBA) epoxy resin hardeners. Thermal behavior and curing kinetics of dendrimer/DGEBA systems were investigated by means of differential scanning calorimetry (DSC). Compared with ethylene diamine (EDA)/DGEBA system, the dendrimer/DGEBA systems gradually liberated heat in two stages during the curing process, and the total heat liberated was less. Apparent activation energy and curing reaction rate constants for dendrimer and EDA/DGEBA systems were estimated. Thermal stabilities and mechanical properties of cured thermosetting systems were examined as well. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3902–3906, 2006  相似文献   

2.
Ag‐dendrimer nanoclusters were prepared with Ag+ and carboxyl shell (G4.5) poly(amino amine) dendrimers. Self‐assembly photosensitive ultrathin films were then fabricated with these Ag‐dendrimer nanoclusters as polyanions and diazoresin (DR) as polycation. With UV irradiating the films became stable because of the formation of covalent linkages between the layers. Compared to similar films containing no Ag nanoclusters, the obtained films showed greatly enhanced electric conductivity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1515–1519, 2003  相似文献   

3.
Novel bioactive and optically active poly(N‐acryloyl‐L ‐phenylalanine) (PAPA) was synthesized by atom transfer radical polymerization. PAPA‐silver (Ag) nanocomposites have been successfully prepared via in situ reducing Ag+ ions anchored in the polymer chain using hydrazine hydrate as reducing agent in an aqueous medium. By controlling of the amount of Ag+ ions introduced, we have produced an organic/inorganic nanocomposite containing Ag nanoparticles with well controlled size. Nanocomposites were characterized by X‐ray diffraction (XRD), UV–Vis spectrophotometry, transmission electron microscopy, and Fourier transform infrared. XRD pattern showed presence of Ag nanoparticles. The PAPA/Ag nanocomposites with 1 : 10 silver nitrate (AgNO3) : PAPA ratio revealed the presence of well‐dispersed Ag nanoparticles in the polymer matrix. All of these Ag nanoparticles formed are spherical and more than 80% of them are in the range of 15–25 nm. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Hyperbranched poly(amidoamine)s with methyl ester terminals (HPAMAM‐COOCH3) were used as nanoreactors and reductants to prepare gold or silver nanoparticles (Au NPs or Ag NPs). HPAMAM‐COOCH3 could bind AuCl4 (or Ag+) and then reduce AuCl4 (or Ag+) into Au NPs (or Ag NPs) through their internal amines, while the external methyl ester groups prevented the aggregation of polymers. The formation of Au NPs or Ag NPs was verified using transmission electron microscopy (TEM), ultraviolet‐visible spectroscopy (UV‐Vis), X‐Ray powder diffraction (XRD), Fourier‐transform infrared spectroscopy (FT‐IR), and thermogravimetric analysis (TGA), confirming the formation of Au NPs or Ag NPs with small particle size and low size distribution.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

5.
The use of silicon powder to produce plasmonic Ag nanocomposite phosphate glasses which also exhibit improved transparency in the ultraviolet (UV) is proposed. Ag2O/Si codoped glasses were prepared in a barium‐phosphate matrix by a simple melt‐quench method in ambient atmosphere. The as‐prepared glasses exhibit enhanced UV transparency, whereby the surface plasmon resonance of Ag nanoparticles (NPs) is manifested for the glasses with higher Ag2O contents. 31P nuclear magnetic resonance spectroscopy is consistent with the formation of P–O–Si bonds, thus suggesting their possible role on the improved UV light transmission. Consequently, a model was presented accounting for the influence of silicon on the polymerization of the phosphate network concomitant with the creation of highly reactive oxygen species. Further exploiting the proposed reactive species, a real‐time spectroscopic study of the plasmonic response of Ag NPs in Ag/Si codoped glass samples was carried out during an in situ thermal processing. The temperature dependence of the Ag particle precipitation was studied in the 400°C–430°C range, from which an Arrhenius‐type plot allowed for estimating the activation energy of the process at 3.42 (±0.38) eV. Ultimately, the vanishing of the luminescence ascribed to Ag+ ions was observed in a heat‐treated sample, consistent with the high reactivity acquired by the glass matrix. Silicon thus appears promising for producing UV transparent glasses for high‐performance optics and for the reduction of Ag+ ions to produce Ag nanocomposites valuable for photonic (nanoplasmonic) applications.  相似文献   

6.
Cross‐linked chitosans synthesized by the inverse emulsion cross‐link method were used to investigate adsorption of three metal ions [Cd(II), Pb(II), and Ag(I)] in an aqueous solution. The chitosan microsphere, was characterized by FTIR and SEM, and adsorption of Cd(II), Pb(II), and Ag(I) ions onto a cross‐linked chitosan was examined through analysis of pH, agitation time, temperature, and initial concentration of the metal. The order of adsorption capacity for the three metal ions was Cd2+ > Pb2+ > Ag+. This method showed that adsorption of the three metal ions in an aqueous solution followed the monolayer coverage of the adsorbents through physical adsorption phenomena and coordination because the amino (? NH2) and/or hydroxy (? OH) groups on chitosan chains serve as coordination sites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Silver nanoparticles were produced inside a poly(N‐vinyl‐2‐pyrrolidone) hydrogel (PVP) by an innovative method based on the electrochemical reduction of Ag+ ions within the swollen PVP hydrogel. UV‐visible spectroscopy showed the highest value of the absorbance intensity and the lowest values of the wavelength of the absorbance maximum and the full width at the half‐maximum absorbance for the Ag/PVP nanocomposite obtained at 200 V during 4 min. Cyclic voltammetry results suggested an adequate entrapment of the silver nanoparticles. The mechanical properties under bioreactor conditions of the Ag/PVP nanocomposite suggested the possibility of wound dressing application. Silver release from Ag/PVP nanocomposites was confirmed under static conditions as well as by their antimicrobial activity against Staphylococcus aureus. POLYM. COMPOS., 35:217–226, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
We report here a general approach to using poly(amidoamine) (PAMAM) dendrimers modified with polyethylene glycol (PEG) as a platform to encapsulate an anticancer drug doxorubicin (DOX) for in vitro cancer therapy applications. In this approach, PEGylated PAMAM dendrimers were synthesized by conjugating monomethoxypolyethylene glycol with carboxylic acid end group (mPEG‐COOH) onto the surface of generation 5 amine‐terminated PAMAM dendrimer (G5.NH2), followed by acetylation of the remaining dendrimer terminal amines. By varying the molar ratios of mPEG‐COOH/G5.NH2, G5.NHAc‐mPEGn (n = 5, 10, 20, and 40, respectively) with different PEGylation degrees were obtained. We show that the PEGylated dendrimers are able to encapsulate DOX with approximately similar loading capacity regardless of the PEGylation degree. The formed dendrimer/DOX complexes are water soluble and stable. In vitro release studies show that DOX complexed with the PEGylated dendrimers can be released in a sustained manner. Further cell viability assay in conjunction with cell morphology observation demonstrates that the G5.NHAc‐mPEGn/DOX complexes display effective antitumor activity, and the DOX molecules encapsulated within complexes can be internalized into the cell nucleus, similar to the free DOX drug. Findings from this study suggest that PEGylated dendrimers may be used as a general drug carrier to encapsulate various hydrophobic drugs for different therapeutic applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40358.  相似文献   

9.
BACKGROUND: On the basis of effective bioaffinity adsorption of Ag+, silver nanoparticles (Ag NPs) were synthesized on the surface of chitosan‐TiO2 adsorbent (CTA) by TiO2 photocatalysis for crystal growth. RESULTS: Among the microstructure characterizations of the resulting silver nanoparticles‐ loaded chitosan‐TiO2 adsorbent (Ag‐CTA), X‐ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive X‐ray (EDX) revealed the formation of metallic Ag on the CTA, which was further confirmed by the surface plasmon resonance of Ag NPs in the UV‐visible absorption spectrum. The underlying mechanism behind the formation of Ag NPs on the CTA by TiO2 photoreduction was studied by Fourier transform infrared (FTIR) spectroscopy. The distinctive feature of Ag‐CTA after adsorption was the highly efficient antimicrobial activity in inactivating different test strains. In the case of Escherichia coli, 1.50 mg 1.67 wt% Ag‐CTA could totally inhibit 1.0–1.2 × 107 colony forming units (CFU) in 100 mL nutrient medium, which was superior to that previously reported. CONCLUSIONS: CTA effectively adsorbed the precious metal ion Ag+ onto active imprinting sites on the adsorbent and then exerted efficient antimicrobial effects against diverse microbes. This research will be useful for designing a novel CTA‐based wastewater treatment for multi‐functional performance. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
A new method for the fabrication of an electromagnetic nanocomposite based on Fe3O4 and polyaniline (PANI) is offered. The authors focused on improvement of the physical and electromagnetic properties of the nanocomposite using a new synthetic method. Supermagnetic Fe3O4 nanoparticles were synthesized through coprecipitation method. As a chemical modification, the third generation of poly (amidoamine) dendrimer was grafted on the surface of the nanoparticles. PANI was grafted from –NH2 functional groups of dendrimer via in situ polymerization of aniline. Finally, Au nanoparticles were loaded on the nanocomposite and its catalytic activity for reduction reactions was studied.  相似文献   

11.
In contrast to extensive literature concerning Ag incorporation in hydroxyapatite, HA, while the phosphate approximated to stoichiometry of Ca10(PO4)6(OH)2, with added Ag has been precipitating from an aqueous solution, the paper presents Ag incorporation through Ag ion infusion from AgNO3 solution into solid HA pressed in pellet and ignited at 800°C. After Ag ions infused into the HA‐solid (crossed the interfacial solution‐solid boundary), they diffused across the crystal structure to a depth of time‐dependent several mm. The path of Ag diffusion in the solid HA was recorded using SEM‐EDS point analyses of Ag, Ca, P, EDS‐linear analyses of those elements, and elemental mapping. Time‐dependent concentrations of Ag+, Ca2+, and PO43? in AgNO3 solutions were also analyzed. The appearance of Ag in the crystalline HA with simultaneous local depletion in Ca and phosphate recorded as P, observed by EDS with simultaneous appearance of Ca2+ and PO43? ions and a decrease in Ag+ concentration in AgNO3 solution led the authors to a conclusion that Ag+ for Ca2+ substitution supported by PO43? charge balancing in the crystalline HA was in process. The HA particles in the section of the pellet without Ag had a uniform shape and size approximated to 300–400 nm. SEM image of the HA solid section, where Ag ions appeared was characterized by irregular aggregates of smaller crystals with sporadically present large, shaped in prism blocks identified by the XRD as Ag3PO4.  相似文献   

12.
Polyvinyl alcohol (PVA)/regenerated silk fibroin (SF)/AgNO3 composite nanofibers were prepared by electrospinning. A large number of nanoparticles containing silver were generated in situ and well‐dispersed nanoparticles were confirmed by transmission electron microscopy (TEM) intuitionally. Ultraviolet (UV)‐visible spectroscopy and X‐ray diffraction (XRD) patterns indicated that nanoparticles containing Ag were present both in blend solution and in composite nanofibers after heat treatment and after subsequent UV irradiation. By annealing the nanofibers, Ag+ therein was reduced so as to produce nanoparticles containing silver. By combining heat treatment with UV irradiation, Ag+ was transformed into Ag clusters and further oxidized into Ag3O4 and Ag2O2. Especially size of the nanoparticles increased with heat treatment and subsequent UV irradiation. This indicated that the nanoparticles containing silver could be regulated by heat treatment and UV irradiation. The antimicrobial activity of heat‐treated composite nanofibers was evaluated by Halo test method and the resultant nanofibers showed very strong antimicrobial activity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
A novel amino‐functionalized polystyrene copolymer (PS‐NH2) was designed and synthesized with styrene and 4‐vinylbenzyl amine. Additionally, an amino modified glass (G‐NH2) was obtained as a carrier. (PS‐NH2/pyrene)/G‐NH2 fluorescent nanofibrous membrane [named (PS‐NH2/pyrene)/G‐NH2] was designed and prepared via electrospinning technique to detect representative saturated nitroaromatic (NAC) explosive vapor. The (PS‐NH2/pyrene)/G‐NH2 showed highly fluorescence stability in ambient condition and further displayed a high quenching efficiency of 70.9% toward trinitrotoluene (TNT) vapor (~10 ppb) with an exposure time of 150 s at room temperature. The abundance of amino groups could effectively adsorb NACs and the binding of electron‐deficient NACs to the amino groups on the (PS‐NH2/pyrene)/G‐NH2 surface led to the formation of charge‐transfer complexes. The quenching constant (KSV) to TNT was obtained to be 1.07 × 1011 mL/g in gaseous phase with a limit of detection up to 2.76 × 10?13g/mL. Importantly, the (PS‐NH2/pyrene)/G‐NH2 showed notable selectivity toward TNT and 2,4‐dinitrotoluene vapors. Straightforwardly, the colorimetric sensing performance can be visualized by naked eye with a color change for detecting of different vapor phase NACs explosives. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46708  相似文献   

14.
Silver nanoparticles (AgNPs) with controlled size and size distribution were prepared by an in situ chemical reduction route based on a microreactor template composed of poly(acrylamide-co-N-vinylpyrrolidone)/chitosan semi-interpenetrating network hydrogels, P(AAm-co-NVP)/CS semi-IPN, in the presence of sodium hypophosphite. The characterization of structures and morphologies of the as-fabricated P(AAm-co-NVP)/CS–Ag nanocomposite hydrogels was conducted on a Fourier transformation infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), and UV–vis spectrometer. The effect of various component proportions of the reactants on formation of AgNPs and swelling of the resulting P(AAm-co-NVP)/CS–Ag nanocomposite hydrogels was investigated. The experimental results indicated that the Ag grains were uniformly dispersed within P(AAm-co-NVP)/CS hydrogel networks in a spherical shape, and were stabilized by the semi-IPN structure and a complexation and/or electrostatic interaction between Ag+ cations and chemical functional groups, such as –OH, –CONH2, –NH2 or –C=O based on the semi-IPN structure reactor templates. The size of the majority of AgNPs ranges from 12 to 25 nm, depending on the three-network templates, the presence of functional groups as well as feed ratios of N-vinylpyrrolidone, acrylamide, and chitosan. Thermogravimetric analysis (TGA) provides the stability of the resulting nanocomposite hydrogels. The nanocomposite hydrogels demonstrate reduced swelling in comparison with the P(AAm-co-NVP)/CS ones. The kinetics modeling confirms that transport mechanism of the samples follows anomalous diffusion mode, and the kinetic parameters vary with the component ratios, and the maximal theoretical water volume S is well in agreement with the experimental values.  相似文献   

15.
This paper describes a novel self-assembly behavior of Ag2O nanoparticles to Ag2O nanowires. In the alkaline water-alcohol solution, Ag+ ions reacted with OH ions on silica nanoparticles functionalized by N-(2-aminoethyl)-3-aminopropyl-trimethoxy-silane (AEAPTS) to form Ag2O nanoparticles. The Ag2O nanoparticles further self-assembled into Ag2O nanowires. The morphology of Ag2O nanowires could be controlled by adjusting Ag/Si molar ratios in the systems. With low Ag/Si molar ratio, uniform Ag2O nanowires were obtained with diameter of about 50 nm and length of tens micrometers. With the increase of Ag/Si molar ratio, Ag2O nanowires became thicker, shorter and irregular. It was shown by high-resolution transmission electron microscopy (HRTEM) that all Ag2O nanowires consisted of tiny Ag2O nanoparticles with diameter of 10-20 nm. The self-assembly of Ag2O nanoparticles into Ag2O nanowires was observed by transmission electron microscopy (TEM) and the corresponding growth mechanism was proposed.  相似文献   

16.
A novel graphene oxide-Ag-C6H5Ag3O7 nanocomposite was prepared by a facile precipitation reaction with the aid of photo-reduction. The rich surface functional groups of graphene oxide (GO) interacted with silver cations, provided the nucleation sites and induced the formation of C6H5Ag3O7 nanoparticles on the GO surface uniformly. The nanocomposite displayed an enhanced photocatalytic activity compared with pure C6H5Ag3O7 and GO under simulated sunlight, due to the reduced recombination of plasmon-induced electron–hole pairs on the Ag nanoparticles by the GO. This study likely provides one possibility of exploiting stable Ag/silver (I) complex photocatalysts in dealing with environmental contaminants.  相似文献   

17.
Several dendrimer–clay nanocomposites have been prepared. Firstly, the dendrimer (DE1)/clay nanocomposite was obtained via an in situ free radical polymerization of a double bond‐ended dendrimer (DE1), derived from Behera's amine by using 2,2′‐azobisisobutyronitrile (AIBN), as initiator, and Cloisite 30 B, as nanofiller. Further free radical in situ copolymerization processes were conducted between DE1, methyl methacrylate (MMA), and styrene (St). Two other dendrimer/clay nanocomposites were prepared by the reaction of second generation (G2)–36‐acid dendrimer (DE2) and N,N′,N′,N′‐tetrakis[2‐hydroxy‐1,1‐bis(hydroxylmethyl) ethyl]‐α,α,ω,ω‐alkane‐tetracarboxamide [6]‐10‐[6] Arborols (DE3) with montmorillonite clay (MMT). POLYM. ENG. SCI., 53:2166–2174, 2013. © 2013 Society of Plastics Engineers  相似文献   

18.
A simple method for preparation of Ag nanoparticle (NP)/multiwalled carbon nanotube (MWCNT) composites using laser irradiation without a reducing agent is presented. Ag NPs were grown on MWCNTs by laser-induced photoreduction of [Ag(NH3)2]+. The larger the initial [Ag(NH3)2]+ concentration, the bigger the average particle size. XRD investigations revealed the well-crystallized structure of the nanoparticles.  相似文献   

19.
The electrical properties of a poly(p‐phenylene vinylene) (PPV) conjugated polymer using silver (Ag) as a cathode were improved by the incorporation of silicon dioxide (SiO2) nanoparticles. The current density of the Ag–PPV/SiO2 nanocomposite system was higher than that of Ag–PPV. A lower level of interfacial oxidation was found in the Ag–PPV/SiO2 nanocomposite than in Ag–PPV, confirming that a more complete elimination of residue occurred in the nanocomposite. This was due to the relatively large surface area of the PPV/SiO2 nanocomposite film and the hydrophilic surface of the SiO2 nanoparticles. The lower level of oxidation contributed to an improvement in the material's current–voltage characteristics. Morphology‐dependent current–voltage characteristics were enhanced by a large variation in the thickness of the Ag–PPV/SiO2 nanocomposite film because an increased effective field strength could be induced in the thinner regions of the film. The incorporation of SiO2 nanoparticles altered the effective film thickness and the amount of residue in the interior of the PPV without disrupting the structure of the conjugated polymer. The Ag cathode created a stable interface with the PPV film layer without causing the formation of an organic–metal complex, which would have obstructed electron injection. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Novel ion‐selective membranes were prepared by means of the noncovalent modification of a cellulose acetate (CA) polymer with either poly(ethylene‐alt‐maleic anhydride) or poly(allylamine hydrochloride) chains covalently linked to Starburst amine‐terminated polyamidoamine (PAMAM) dendrimers generations 4 and 3.5, respectively. Linear polymer incorporation within the porous CA membrane was performed with mechanical forces, which resulted in modified substrates susceptible to covalent adsorption of the relevant dendritic materials via the formation of amide bonds with a carbodiimide activation agent. The membranes thus prepared were characterized by chemical, physical, and spectroscopic measurements, and the results indicate that the dendrimer peripheral functional groups were the species that participated in the ion‐exchange events. The prepared materials were also evaluated for their ion‐exchange permeability with sampled current voltammetry experiments involving cationic and anionic species {[Ru(NH3)6]3+ and [Fe(CN6)]3?, respectively} as redox probe molecules under different pH conditions. As expected, although permeability was favored by opposite charges between the dendrimer and the electroactive probe, a clear blocking effect took place when the charge in the dendritic polymer and the electroactive complex was the same. Electrochemical impedance spectroscopy measurements, on the other hand, showed that the PAMAM‐modified membranes were characterized by good selectivity and low resistance values for multivalent ions compared to a couple of commercial ion‐exchange membranes. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号