首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acrylic acid (AA)‐g‐polypropylene (PP) membranes were prepared by grafting AA on to a microporous PP membrane via plasma‐induced graft polymerization. The grafting of AA to the PP membrane was investigated using Fourier transform infrared spectroscopy (FTIR). Pore‐filling of the membranes was confirmed by field emission‐scanning electron microscopy (FESEM) and energy dispersing X‐ray (EDX). Ion exchange capacity (IEC), membrane electric resistance, transport number and water content were measured and analyzed as a function of grafting reaction time. The prepared AA‐g‐PP membranes showed moderate electrochemical properties as a cation‐exchange membrane. In particular, membranes with a degree of grafting of 155% showed good electrical properties, with an IEC of 2.77 mmol/g dry membrane, an electric resistance of 0.4 Ω cm2 and a transport number of 0.96. Chronopotentiometric measurements indicated that AA‐g‐PP membranes, with a high IEC had a sufficient conducting region in the membrane. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
pH‐responsive polyethylene terephthalate (PET) track‐etched membranes were synthesized by grafting 2‐hydroxyethyl‐methacrylate (HEMA) on the surface of the membrane via atom transfer radical polymerization. The controllability of grafting polymerization of HEMA on membrane surface is systematically investigated. The pH‐responsive characteristics of PET‐g‐poly(2‐hydroxyethyl‐methacrylate) (PHEMA) gating membranes with different grafted PHEMA chain lengths are measured by tracking the permeation of water solution with different pH values. The results show that the grafting polymerization is controllable, and the permeation of grafted membranes is affected by the grafted PHEMA chain lengths on the surface of membrane. The results also demonstrate that the grafted PET membranes exhibit reversible pH‐response permeation to environmental pH values. Desired pH‐responsive membranes are obtained by controlling the grafted PHEMA chain lengths via atom transfer radical polymerization method. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40912.  相似文献   

3.
Chlorinated poly(vinyl chloride) (CPVC) membranes for microfiltration processes were prepared with the combined process of a solvent evaporation technique and the water‐vapor induced‐phase‐inversion method. CPVC membranes with a mean pore size of 0.7 μm were very hydrophobic. These membranes were subjected to surface modification by ultraviolet (UV)‐assisted graft polymerization with N‐vinyl‐2‐pyrrolidinone (NVP) to increase their surface wettability and decrease their adsorptive fouling. The grafting yields of the modified membranes were controlled by alteration of UV irradiation time and NVP monomer concentration. The changes in chemical structure between the CPVC membrane and the CPVC‐g‐poly(N‐vinyl‐2‐pyrrolidinone) membrane and the variation of the topologies of the modified PVC membranes were characterized by Fourier transform infrared spectroscopy, gel permeation chromatography, and field emission scanning electron microscopy. According to the results, the graft yield of the modified CPVC membrane reached a maximum at 5 min of UV exposure time and 20 vol % NVP concentration. The filtration behavior of these membranes was investigated with deionized water by a crossflow filtration measurement. The surface hydrophilicity and roughness were easily changed by the grafting of NVP on the surface of the CPVC membrane through a simultaneous irradiation grafting method by UV irradiation. To confirm the effect of grafting for filtration, we compared the unmodified and modified CPVC membranes with respect to their deionized water permeation by using crossflow filtration methods. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3188–3195, 2003  相似文献   

4.
In a previous study, we proved that tailoring the polyamide backbone stiffness is an effective way to fabricate high‐performance polyamide nanofiltration (NF) membranes. However, in the previous study, we mainly focused on the flat membrane and did not consider its chlorine tolerance. In this study, by regulating the aqueous‐phase compositions in the interfacial polymerization process, chlorine tolerance on NF hollow‐fiber membranes was endowed while the membrane performance stayed high. The experimental results show that when the ratio of Piperazine (PIP)–bisphenol F (BPF)/2,2′‐bis(1‐hydroxyl‐1‐trifluoromethyl‐2,2,2‐triflutoethyl)‐4,4′‐methylene dianiline (BHTTM) was 5:1:4, the NF membrane possessed a permeate flux of 21.0 L m?2 h?1 bar?1 and an Na2SO4 rejection up to 90.0%. X‐ray photoelectron spectroscopy analysis also confirmed that the polymerization degree of the PIP–BPF–BHTTM NF membrane was the highest. Moreover, the NF membrane could tolerate active chlorine to over 10,000 ppm h Cl. After the active chlorine treatment, the permeate flux increased over 30.0 L m?2 h?1 bar?1, and the Na2SO4 rejection was about 90.0%. Although the PIP–BHTTM NF membrane also possessed good chlorine tolerance, its permeate flux (after active chlorine treatment) was only 60% of that of the PIP–BPF–BHTTM NF membrane. Therefore, the PIP–BPF–BHTTM NF membrane possessed a combination of high flux and high chlorine tolerance and showed good potential in water treatment in rigorous environments. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46482.  相似文献   

5.
Through the use of thermal polymerization, poly(vinylidene fluoride) (PVDF) hollow‐fiber membranes modified by a thin layer of molecularly imprinted polymers (MIPs) were developed for the selective separation of levofloxacin. To demonstrate the changes induced by thermal polymerization, PVDF hollow‐fiber membranes with different modification degrees by repeated polymerization were weighed. The total weight of the imprinted membranes increased by 14 μg/cm2 after a five‐cycle polymerization. An increase in the membrane weight indicated the deposition of an MIP layer on the external surface of PVDF hollow‐fiber membranes during each polymerization cycle, which was also characterized by scanning electron microscopy. MIP membranes with different degrees of surface modification provided highly selective binding of levofloxacin. Both hollow‐fiber MIP membranes and nonimprinted membranes showed enhanced adsorption of levofloxacin and ofloxacin gradually with an increase in the modification degrees of PVDF hollow‐fiber membranes to a maximum value followed by a decrease. These results indicate that thermal polymerization indeed produces an MIP layer on the external surface of PVDF hollow‐fiber membranes and that it is feasible to control the permeability by repeated polymerization cycles. Different solvent systems in the permeation experiments were used to understand the hydrophobic interaction as one of the results of the binding specificity of MIP membranes. Selective separation was obtained by multisite binding to the template via ionic, hydrogen‐bond, and hydrophobic interactions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Hydroxyterminated polybutadiene (HTPB)‐based polyurethaneurea (PU), HTPB‐PU, was synthesized by two‐step polymerization and was firstly used as membrane materials to recover aroma, ethyl acetate (EA), from aqueous solution by pervaporation (PV). The effects of the number–average molecular weight (Mn) of HTPB, EA in feed, operating temperature, and membrane thickness on the PV performance of HTPB‐PU membranes were investigated. The membranes demonstrated high EA permselectivity as well as high EA flux. The DSC result showed two transition temperatures in the HTPB‐PU membrane and contact angle measurements revealed the difference of hydrophobicity of the membrane at both sides, which were induced by glass plate and air, respectively, due to movement of the soft hydrophobic polybutadiene (PB) segments in HTPB‐PU chains. Furthermore, the PV performance of the HTPB‐PU membrane with the hydrophobic surface facing the feed was much better than that with the hydrophilic surface. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 552–559, 2007  相似文献   

7.
To improve the pervaporation performance in separating an aqueous ethanol solution, polyamide thin‐film composite (TFC) membranes (m‐tolidine‐H‐TMC/mPAN) were prepared through the interfacial polymerization reaction between trimesoyl chloride (TMC) and 2,2'‐dimethylbenzidine hydrochloride (m‐tolidine‐H) on the surface of a modified polyacrylonitrile (mPAN) membrane. The effects of the feed ethanol concentration on the pervaporation performance and the durability of m‐tolidine‐H‐TMC/mPAN TFC membranes were investigated. To choose the optimal mPAN membrane as the TFC substrate, the effect of hydrolysis time on the chemical properties and separation performance of an mPAN substrate was also studied. An appropriate hydrolysis time of 15 min was chosen to obtain the mPAN substrate due to the corresponding high permeation flux. The m‐tolidine‐H‐TMC/mPAN TFC membrane exhibited a high pervaporation performance for ethanol dehydration. A positron annihilation lifetime spectroscopy experiment was used to estimate the mean free‐volume radius of the m‐tolidine‐H‐TMC polyamide selective layer, which lay between the radii of the water and ethanol molecules. © 2013 Society of Chemical Industry  相似文献   

8.
A new scheme has been developed to fabricate high‐performance forward osmosis (FO) membranes through the interfacial polymerization reaction on porous polymeric supports. p‐Phenylenediamine and 1,3,5‐trimesoylchloride were adopted as the monomers for the in‐situ polycondensation reaction to form a thin aromatic polyamide selective layer of 150 nm in thickness on the substrate surface, a lab‐made polyethersulfone (PES)/sulfonated polysulfone (SPSf)‐alloyed porous membrane with enhanced hydrophilicity. Under FO tests, the FO membrane achieved a higher water flux of 69.8 LMH when against deionized water and 25.2 LMH when against a model 3.5 wt % NaCl solution under 5.0 M NaCl as the draw solution in the pressure‐retarded osmosis mode. The PES/SPSf thin‐film‐composite (TFC)‐FO membrane has a smaller structural parameter S of 238 μm than those reported data. The morphology and topology of substrates and TFC‐FO membranes have been studied by means of atomic force microscopy and scanning electronic microscopy. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

9.
Poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) can be crosslinked by interfacial polymerization to develop a positively charged dense network structure. According to this mechanism, a positively charged hollow‐fiber composite nanofiltration (NF) membrane was prepared by quaternization to achieve a crosslinked PDMAEMA gel layer on the outer surface of polysulfone hollow‐fiber ultrafiltration (UF) membranes with a PDMAEMA aqueous solution as a coating solution and p‐xylylene dichloride as an agent. The preparation conditions, including the PDMAEMA concentration, content of additive in the coating solution, catalyzer, alkali, crosslinking temperature, and hollow‐fiber substrate membrane, were studied. Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the structure of the membranes. This membrane had a rejection to inorganic salts in aqueous solution. The rejection of MgSO4 (2 g/L aqueous solution at 0.7 MPa and 25°C) was above 98%, and the flux was about 19.5 L m?2 h?1. Moreover, the composite NF membranes showed good stability in the water‐phase filtration process. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Controlled thermoresponsive PET track‐etched membranes were synthesized by grafting N‐isopropylacrylamide (NIPAAm) onto the membrane surface via atom transfer radical polymerization (ATRP). The initial measurements were made to determine the anchoring of ATRP initiator on PET membrane surface. Thereafter, polymerization was carried out to control the mass of polymer by controlling reaction time grafted from the membrane surface and, ATR‐FTIR, grafting degree measurements, water contact angle measurements, TGA, and SEM were used to characterize changes in the chemical functionality, surface and pore morphology of membranes as a result of modification. Water flux measurements were used to evaluate the thermoresponsive capacity of grafted membranes. The results show the grafted PET track‐etched membranes exhibit rapid and reversible response of permeability to environmental temperature, and its permeability could be controlled by controlling polymerization time using ATRP method. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

11.
Both hydrophilic Nylon‐6 membranes and hydrophobic poly(vinylidene fluoride) (PVDF) membranes, with a wide range of grafting yields of poly(N‐isopropylacrylamide) (PNIPAM), were prepared using the plasma‐graft pore‐filling polymerization method. The effect of the physical and chemical properties of the substrates on the thermo‐responsive gating characteristics of the PNIPAM‐grafted membranes was investigated experimentally. For both the PVDF and Nylon‐6 membranes, the grafted PNIPAM polymers were found not only on the membranes outer surface, but also on the inner surfaces of the pores throughout the entire thickness of the membrane. The thermo‐responsive gating characteristics of the PNIPAM‐grafted membranes were heavily affected by the physical and chemical properties of the porous membrane substrates. The PNIPAM‐g‐Nylon‐6 membranes exhibited a much larger thermo‐responsive gating coefficient than the PNIPAM‐g‐PVDF membranes. Furthermore, to achieve the largest thermo‐responsive gating coefficient, the corresponding optimum grafting yield of PNIPAM for the PNIPAM‐g‐Nylon‐6 membranes was also larger than that for the PNIPAM‐g‐PVDF membranes.  相似文献   

12.
Outer‐selective thin‐film composite (TFC) hollow fiber membranes offer advantages like less fiber blockage in the feed stream and high packing density for industrial applications. However, outer‐selective TFC hollow fiber membranes are rarely commercially available due to the lack of effective ways to remove residual reactants from fiber's outer surface during interfacial polymerization and form a defect‐free polyamide film. A new simplified method to fabricate outer‐selective TFC membranes on tribore hollow fiber substrates is reported. Mechanically robust tribore hollow fiber substrates containing three circular‐sector channels were first prepared by spinning a P84/ethylene glycol mixed dope solution with delayed demixing at the fiber lumen. The thin wall tribore hollow fibers have a large pure water permeability up to 300 L m?2 h?1 bar?1. Outer‐selective TFC tribore hollow fiber membranes were then fabricated by interfacial polymerization with the aid of vacuum sucking to ensure the TFC layer well‐attached to the substrate. Under forward osmosis studies, the TFC tribore hollow fiber membrane exhibits a good water flux and a small flux difference between active‐to‐draw (i.e., the active layer facing the draw solution) and active‐to‐feed (i.e., the active layer facing the feed solution) modes due to the small internal concentration polarization. A hyperbranched polyglycerol was further grafted on top of the newly developed TFC tribore hollow fiber membranes for oily wastewater treatment. The membrane displays low fouling propensity and can fully recover its water flux after a simple 20‐min water wash at 0.5 bar from its lumen side, which makes the membrane preferentially suitable for oil‐water separation. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4491–4501, 2015  相似文献   

13.
Polystyrene cation exchange membranes were prepared by a PVC‐based semi‐interpenetrating polymer network (IPN) method. The reaction behaviors during polymerization and sulfonation in the preparation method were investigated. The prepared membranes were characterized in terms of the physical and electrochemical properties. The membranes exhibited reasonable mechanical properties (tensile strength, 13 MPa, and elongation at break, 52%) for an ion‐exchange membrane with the ratio of polystyrene–divinylbenzene (DVB)/poly(vinyl chloride) (PVC) (RSt‐DVB/PVC) of below 0.9. Fourier transform infrared/attenuated total reflectance, differential scanning calorimetry, and scanning electron microscopy studies revealed the formation of a homogeneous membrane. The resulting membrane showed membrane electrical resistance of 2.0 Ω cm2 and ion‐exchange capacity of 3.0 meq/g dry membrane. The current–voltage (I–V) curves of the membrane show that the semi‐IPN polystyrene membranes can be properly used at a high current density, and that the distribution of cation‐exchange sites in the membrane was more homogenous than that in commercial membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1488–1496, 2003  相似文献   

14.
A zwitterionic poly(vinyl alcohol‐co‐ethylene) (PVA‐co‐PE) nanofiber membrane for resistance to bacteria and protein adsorption was fabricated by the atom transfer radical polymerization of sulfobetaine methacrylate (SBMA). The PVA‐co‐PE nanofiber membrane was first surface‐activated by α‐bromoisobutyryl bromide, and then, zwitterionic SBMA was initiated to polymerize onto the surface of nanofiber membrane. The chemical structures of the functionalized PVA‐co‐PE nanofiber membranes were confirmed by attenuated total reflectance–Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. The morphologies of the PVA‐co‐PE nanofiber membranes were characterized by scanning electron microscopy. The results show that the poly(sulfobetaine methacrylate) (PSBMA) was successfully grafted onto the PVA‐co‐PE nanofiber membrane, and the surface of the nanofiber membrane was more hydrophilic than that of the pristine membrane. Furthermore, the antibacterial adsorption properties and resistance to protein adsorption of the surface were investigated. This indicated that the PSBMA‐functionalized surface possessed good antibacterial adsorption activity and resistance to nonspecific protein adsorption. Therefore, this study afforded a convenient and promising method for preparing a new kind of soft and nonwoven dressing material with antibacterial adsorption and antifouling properties that has potential use in the medical field. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44169.  相似文献   

15.
To improve the antifouling property of poly(vinyl chloride) (PVC) membranes, a series of poly(methacrylic acid) grafted PVC copolymers (PVC‐g‐PMAA) with different grafting degree were synthesized via one‐step atom transfer radical polymerization process utilizing the labile chlorines on PVC backbones followed by one‐step hydrolysis reaction. PVC/PVC‐g‐PMAA blend membranes with different grafting degree and copolymer content were prepared by nonsolvent induced phase separation method. The surface chemical composition, surface charge, membrane structures, wettability, permeability, separation performances and the fouling resistance of blend membranes were carefully investigated. The results indicated that the PMAA chains were segregated towards the surface and the membranes were endowed with negative charge. The hydrophilicity and permeability of the blend membranes were obviously improved. Furthermore, the antifouling ability especially at neutral or alkaline environments was also significantly increased. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42745.  相似文献   

16.
Thermo‐responsive porous membranes with grafted linear and crosslinked poly(N‐isopropylacrylamide) (PNIPAM) gates are successfully prepared at temperatures above and below the lower critical solution temperature (LCST) of PNIPAM by using a plasma‐induced grafting polymerization method, and the effects of operation pressure and grafting temperature on the thermo‐responsive gating characteristics of the prepared membranes are investigated systematically. The fluxes of water through the grafted membranes increase simply with increasing the operation pressure no matter whether the environmental temperature is 40 °C or 25 °C. Under high operation pressure (e.g., higher than 0.14 MPa), the grafted linear PNIPAM gates deform to a certain extent, whereas the grafted crosslinked PNIPAM gates do not deform. For both membranes with grafted linear and crosslinked PNIPAM gates, the membranes prepared at 25 °C (below the LCST of PNIPAM) show larger thermo‐responsive gating coefficients than those prepared at 40 °C (above the LCST of PNIPAM), which results from different distributions of grafted PNIPAM gates in the membrane pores. When the PNIPAM gates are grafted at 25 °C, the grafted layer near the membrane surface is much thicker than that inside the membrane pores; on the other hand, when the PNIPAM gates are grafted at 40 °C, the grafted layer is homogeneously formed throughout the whole pore length. Both linear and crosslinked grafted PNIPAM gates in the membrane pores exhibit stable and repeatable thermo‐responsive “open‐close” switch performances under the operation pressure of 0.26 MPa. The results in this study provide valuable guidance for designing, fabricating, and operating thermo‐responsive gating membranes with desirable performances.  相似文献   

17.
Polyamide thin film composite hollow fiber membranes have advantages in their unique structure compared to flat sheet membranes. This study examined interfacial polymerization methods for fabricating pilot scale hollow fiber membranes (membrane area: 1.2 m2, number of hollow fiber strands: 1200). For use in osmotic pressure‐driven processes, a one‐pot hydrophilic interfacial polymerization procedure was developed simultaneously to modify the surface property and synthesize polyamide thin film. With the procedure, a pilot scale module has a water flux of 13 LMH using a draw solution of 0.6M NaCl and a feed solution of distilled water through the design of the module configuration. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46110.  相似文献   

18.
Thermo‐responsive membranes were prepared by fabricating cross‐linked poly(N‐isopropylacrylamide) (PNIPAM) hydrogels inside the pores of porous Nylon‐6 (N6) membranes by the free radical polymerization method. SEM micrographs of the prepared membranes showed that PNIPAM hydrogels were filled uniformly throughout the entire thickness of the porous N6 membranes. Both PNIPAM‐filled N6 membranes prepared at 60 °C and at 25 °C exhibited significant reversible and reproducible thermo‐responsive diffusional permeability. When the environmental temperature remained constant, the diffusional coefficient of vitamin B12 (VB12) across the PNIPAM‐filled N6 membrane prepared at 25 °C was ca. twice the value of that prepared at 60 °C due to different filling yields. The thermo‐response factor of the membrane prepared at 25 °C was higher than that prepared at 60 °C. The 3‐dimensional interpenetrating network structure of the cross‐linked PNIPAM hydrogels inside the N6 porous substrates could effectively ensure a repeatable thermo‐responsive permeation performance.  相似文献   

19.
Functionalized polymer membranes have been used as sensor materials for fabrication of electronic tongue. Here, we report the synthesis and characterization of a novel poly(N‐[4H‐1,2,4‐triazol‐4‐yl]acrylamide) (PNTA) for liquid phase aliphatic alcohol sensing in the form of membranes prepared after blending with poly(vinyl chloride) (PVC). Three PNTA‐PVC based membranes were prepared for sensing of six aliphatic alcohols. Polymer membranes were characterized by spectroscopic techniques. Polar groups on PNTA molecules contribute to the alcohol sensing characteristics. The membrane electric potential, generated by the interaction between membrane surface and aqueous aliphatic alcohols, was monitored with the developed multi‐channel electrode based prototype sensing system (MEBPSS). The polymer membranes showed distinct and repeatable response patterns toward different aliphatic alcohols. Among them PNTA‐PVC12 membrane showed maximum discrimination ability due to the PNTA molecules on the membrane surface with highest charge density as ascertained from field emission scanning electron microscopic studies. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44675.  相似文献   

20.
Acrylamide (AAm) solid state polymerization was induced using argon plasma to improve the pervaporation performance of poly(tetrafluoroethylene) (PTFE) membranes (PTFE‐g‐PAAm) in aqueous alcohol mixtures. The surface morphology, chemical composition, and hydrophilicity changes in the PTFE and PTFE‐g‐PAAm membranes were investigated using ATR‐FTIR, SEM, AFM, X‐ray photoelectron spectroscopy, and water contact angle measurements. The surface hydrophilicity rapidly increased with increasing Ar exposure time, but decreased after longer Ar exposure time because of the degradation in the PTFE‐g‐PAAm membrane grafted layer. Compared with the hydrophilicity of the pristine PTFE membrane (water contact angle = 120°), the argon plasma induced acrylamide (AAm) solid‐state polymerization onto the PTFE surface (water contact angle = 43.3°) and effectively improved the hydrophilicity of the PTFE membrane. This value increases slowly with increasing aging time and then reaches a plateau value of about 50° after 10 days of storage under air. The pervaporation separation performances of the PTFE‐g‐PAAm membranes were higher than that of the pristine PTFE membrane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:909–919, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号