首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
The inside cover shows light emission from within the channel of an ambipolar field‐effect transistor based on the green‐light‐emitting conjugated polymer F8BT in a bottom contact/top gate structure, as reported by Sirringhaus and co‐workers on p. 2708. It visually demonstrates the formation of separate electron and hole accumulation layers in ambipolar transistors and radiative recombination of charge carriers where the two layers meet (schematic), which is controlled by the applied voltages.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Organic light‐emitting transistors (OLETs) represent an emerging class of organic optoelectronic devices, wherein the electrical switching capability of organic field‐effect transistors (OFETs) and the light‐generation capability of organic light‐emitting diodes (OLEDs) are inherently incorporated in a single device. In contrast to conventional OFETs and OLEDs, the planar device geometry and the versatile multifunctional nature of OLETs not only endow them with numerous technological opportunities in the frontier fields of highly integrated organic electronics, but also render them ideal scientific scaffolds to address the fundamental physical events of organic semiconductors and devices. This review article summarizes the recent advancements on OLETs in light of materials, device configurations, operation conditions, etc. Diverse state‐of‐the‐art protocols, including bulk heterojunction, layered heterojunction and laterally arranged heterojunction structures, as well as asymmetric source‐drain electrodes, and innovative dielectric layers, which have been developed for the construction of qualified OLETs and for shedding new and deep light on the working principles of OLETs, are highlighted by addressing representative paradigms. This review intends to provide readers with a deeper understanding of the design of future OLETs.  相似文献   

11.
The first fully transparent organic light‐emitting diode (OLED) pixels, fabricated by integrating transparent OLEDs on top of transparent thin‐film transistors (TTFTs), are demonstrated on p. 738 by Riedl and co‐workers, and shown schematically on the inside cover. With an average transmittance of more than 70 % in the visible part of the spectrum (400–750 nm), the presented active pixels pave the way to the realization of fully transparent active matrix displays.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Field‐effect transistors based on solution‐processible organic semiconductors have experienced impressive improvements in both performance and reliability in recent years, and printing‐based manufacturing processes for integrated transistor circuits are being developed to realize low‐cost, large‐area electronic products on flexible substrates. This article reviews the materials, charge‐transport, and device physics of solution‐processed organic field‐effect transistors, focusing in particular on the physics of the active semiconductor/dielectric interface. Issues such as the relationship between microstructure and charge transport, the critical role of the gate dielectric, the influence of polaronic relaxation and disorder effects on charge transport, charge‐injection mechanisms, and the current understanding of mechanisms for charge trapping are reviewed. Many interesting questions on how the molecular and electronic structures and the presence of defects at organic/organic heterointerfaces influence the device performance and stability remain to be explored.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号