首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of polymer entanglement on the self‐assembly, molecular packing structure, and microstructure of low‐Mw (lightly entangled) and high‐Mw (highly entangled) poly (3‐hexylthiophene) (P3HT), and the carrier transport in thin‐film transistors, are investigated. The polymer chains are gradually disentangled in a marginal solvent via ultrasonication of the polymer solution, and demonstrate improved diffusivity of precursor species (coils, aggregates, and microcrystallites), enhanced nucleation and crystallization of P3HT in solution, and self‐assembly of well‐ordered and highly textured fibrils at the solid–liquid interface. In low‐Mw P3HT, reducing chain entanglement enhances interchain and intrachain ordering, but reduces the interconnectivity of ordered domains (tie molecules) due to the presence of short chains, thus deteriorating carrier transport even in the face of improving crystallinity. Reducing chain entanglement in high‐Mw P3HT solutions increases carrier mobility up to ≈20‐fold, by enhancing interchain and intrachain ordering while maintaining a sufficiently large number of tie molecules between ordered domains. These results indicate that charge carrier mobility is strongly governed by the balancing of intrachain and interchain ordering, on the one hand, and interconnectivity of ordered domains, on the other hand. In high‐Mw P3HT, intrachain and interchain ordering appear to be the key bottlenecks to charge transport, whereas in low‐Mw P3HT, the limited interconnectivity of the ordered domains acts as the primary bottleneck to charge transport.  相似文献   

2.
The self‐organization of organic polymer semiconductors into ordered supramolecular assemblies commensurate with efficient charge transport is achieved by tuning a range of process parameters (e.g., film deposition method (spin vs drop cast), solvent boiling point (low vs high boiling point), polymer‐dielectric interface treatment, and post‐deposition processing (solvent vapor or thermal annealing)). However, these strategies present limitations for large‐scale high‐throughput processing due to associated pre‐ and/or post semiconductor deposition steps. Here, photoinduced anisotropic supramolecular assembly of P3HT chains in solution is demonstrated. UV irradiation provides for enhanced intramolecular ordering of solubilized polymer chains, and thereby effects formation of anisotropic supramolecular polymer assemblies via favorable π–π stacking (intermolecular interaction). Molecular ordering is thus dramatically enhanced with concomitant, enhanced charge transport characteristics of corresponding films. Additional pre‐ and/or post treatments are avoided.  相似文献   

3.
A new electrontransport polymer, poly{[N,N′‐dioctylperylene‐3,4,9,10‐bis(dicarboximide)‐1,7(6)‐diyl]‐alt‐[(2,5‐bis(2‐ethyl‐hexyl)‐1,4‐phenylene)bis(ethyn‐2,1‐diyl]} (PDIC8‐EB), is synthesized. In chloroform, the polymer undergoes self‐assembly, forming a nanowire suspension. The nanowire's optical and electrochemical properties, morphological structure, and field‐effect transistor (FET) characteristics are investigated. Thin films fabricated from a PDIC8‐EB nanowire suspension are composed of ordered nanowires and ordered and amorphous non‐nanowire phases, whereas films prepared from a homogeneous PDIC8‐EB solution consist of only the ordered and amorphous non‐nanowire phases. X‐ray scattering experiments suggest that in both nanowires and ordered phases, the PDIC8 units are laterally stacked in an edge‐on manner with respect to the film plane, with full interdigitation of the octyl chains, and with the polymer backbones preferentially oriented within the film plane. The ordering and orientations are significantly enhanced through thermal annealing at 200 °C under inert conditions. The polymer film with high degree of structural ordering and strong orientation yields a high electron mobility (0.10 ± 0.05 cm2 V?1 s?1), with a high on/off ratio (3.7 × 106), a low threshold voltage (8 V), and negligible hysteresis (0.5 V). This study demonstrates that the polymer in the nanowire suspension provides a suitable material for fabricating the active layers of high‐performance n‐channel FET devices via a solution coating process.  相似文献   

4.
A novel and flexible strategy involving hydrothermal transformation of guest‐incorporated zeolite‐seeded mesoporous silica spheres was proposed to prepare guest‐encapsulated hollow zeolite spheres and three‐dimensionally (3D) ordered macroporous zeolite monoliths. The guest species that were pre‐incorporated into the mesopores of silica spheres could be spontaneously encapsulated inside the formed hollow zeolite shells by consuming silica nutrition of the original mesoporous silica cores during the hydrothermal process. A wide range of guest materials with a size ranging from nanometers to micrometers, e.g., Ag and PdO nanoparticles, and mesoporous spheres of carbon and polymer of micrometer size were successfully encapsulated into both discrete hollow zeolite spheres and 3D ordered macroporous zeolite monoliths. Such materials are expected to find a variety of applications such as catalysis, adsorption, and novel microreactors for their special structures with active species inside and zeolitic porous shell outside.  相似文献   

5.
The concepts of template‐induced crystallization on self‐assembled monolayers (SAMs) and the use of polymer additives are combined into a new strategy, where, through the cooperative interaction of a SAM matrix involved in the nucleation process, poly(acrylic acid), a dissolved polyelectrolyte, and the dissolved ions, hierarchically ordered mineral structures are formed. The adsorption of poly(acrylic acid) to the SAM is monitored using a quartz microbalance. Transmission electron microscopy measurements on samples that are taken from polyacrylate solution in short intervals after the start of the reaction reveals that nanometer‐sized particles pre‐formed in solution are being attached to the polymer template. These CaCO3 nanoparticles are still amorphous 20 min after the start of the mineralization process; the transformation from the amorphous to the crystalline phase takes place within the first 60 min of the reaction. The morphologies of the crystalline products exhibit characteristic differences from those that are obtained in crystallization experiments on self‐assembled monolayers without the polyelectrolyte. This model of cooperative formation of vaterite nanowires represents an alternative to current models of structure formation, where two‐phase systems (e.g., microemulsions or foams) act as a structure‐directing interface, or the mineralization process is caused by the diffusion of a hydrolyzable component from a non‐aqueous into an aqueous phase.  相似文献   

6.
The self‐assembly of sodium dodecyl benzene sulphonate (SDBS) functionalized graphene sheets (GSs) and horseradish peroxidase (HRP) by electrostatic attraction into novel hierarchical nanostructures in aqueous solution is reported. Data from scanning electron microscopy, high‐resolution transmission electron microscopy, and X‐ray diffraction demonstrate that the HRP–GSs bionanocomposites feature ordered hierarchical nanostructures with well‐dispersed HRP intercalated between the GSs. UV‐vis and infrared spectra indicate the native structure of HRP is maintained after the assembly, implying good biocompatibility of SDBS‐functionalized GSs. Furthermore, the HRP–GSs composites are utilized for the fabrication of enzyme electrodes (HRP–GSs electrodes). Electrochemical measurements reveal that the resulting HRP–GSs electrodes display high electrocatalytic activity to H2O2 with high sensitivity, wide linear range, low detection limit, and fast amperometric response. These desirable electrochemical performances are attributed to excellent biocompatibility and superb electron transport efficiency of GSs as well as high HRP loading and synergistic catalytic effect of the HRP–GSs bionanocomposites toward H2O2. As graphene can be readily non‐covalently functionalized by “designer” aromatic molecules with different electrostatic properties, the proposed self‐assembly strategy affords a facile and effective platform for the assembly of various biomolecules into hierarchically ordered bionanocomposites in biosensing and biocatalytic applications.  相似文献   

7.
The self‐organization of the polymer in solar cells based on regioregular poly(3‐hexylthiophene) (RR‐P3HT):[6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) is studied systematically as a function of the spin‐coating time ts (varied from 20–80 s), which controls the solvent annealing time ta, the time taken by the solvent to dry after the spin‐coating process. These blend films are characterized by photoluminescence spectroscopy, UV‐vis absorption spectroscopy, atomic force microscopy, and grazing incidence X‐ray diffraction (GIXRD) measurements. The results indicate that the π‐conjugated structure of RR‐P3HT in the films is optimally developed when ta is greater than 1 min (ts ~ 50 s). For t s < 50 s, both the short‐circuit current (JSC) and the power conversion efficiency (PCE) of the corresponding polymer solar cells show a plateau region, whereas for 50 < ts < 55 s, the JSC and PCE values are significantly decreased, suggesting that there is a major change in the ordering of the polymer in this time window. The PCE decreases from 3.6 % for a film with a highly ordered π‐conjugated structure of RR‐P3HT to 1.2 % for a less‐ordered film. GIXRD results confirm the change in the ordering of the polymer. In particular, the incident photon‐to‐electron conversion efficiency spectrum of the less‐ordered solar cell shows a clear loss in both the overall magnitude and the long‐wavelength response. The solvent annealing effect is also studied for devices with different concentrations of PCBM (PCBM concentrations ranging from 25 to 67 wt %). Under “solvent annealing” conditions, the polymer is seen to be ordered even at 67 wt % PCBM loading. The open‐circuit voltage (VOC) is also affected by the ordering of the polymer and the PCBM loading in the active layer.  相似文献   

8.
With the aim of enhancing the field‐effect mobility of self‐assembled regioregular poly(3‐hexylthiophene), P3HT, by promoting two‐dimensional molecular ordering, the organization of the P3HT in precursor solutions is transformed from random‐coil conformation to ordered aggregates by adding small amounts of the non‐solvent acetonitrile to the solutions prior to film formation. The ordering of the precursor in the solutions significantly increases the crystallinity of the P3HT thin films. It is found that with the appropriate acetonitrile concentration in the precursor solution, the resulting P3HT nanocrystals adopt a highly ordered molecular structure with a field‐effect mobility dramatically improved by a factor of approximately 20 depending on the P3HT concentration. This improvement is due to the change in the P3HT organization in the precursor solution from random‐coil conformation to an ordered aggregate structure as a result of the addition of acetonitrile. In the good solvent chloroform, the P3HT molecules are molecularly dissolved and adopt a random‐coil conformation, whereas upon the addition of acetonitrile, which is a non‐solvent for aromatic backbones and alkyl side chains, 1D or 2D aggregation of the P3HT molecules occurs depending on the P3HT concentration. This state minimizes the unfavorable interactions between the poorly soluble P3HT and the acetonitrile solvent, and maximizes the favorable ππ stacking interactions in the precursor solution, which improves the molecular ordering of the resulting P3HT thin film and enhances the field‐effect mobility without post‐treatment.  相似文献   

9.
Recent studies on superhydrophobic surfaces have revealed the important roles of structural hierarchy in the overall properties of these surfaces. Here, a novel, versatile, and efficient technique is introduced for fabricating macroscopic hierarchical superhydrophobic surfaces with both well‐defined primary microstructures and well‐ordered secondary nanostructures using electron‐beam lithography. With this technique, the engineering capability of controlling the size, shape, and distribution of the secondary‐features is demonstrated, which allows a systematic and quantitative study of the individual effects of these parameters. Superhydrophobic surfaces produced by this new technique exhibit two distinctive wetting behaviors, high and low adhesion. The structural characteristics and structure‐property relations of each of those two regimes are discussed.  相似文献   

10.
A sequential nucleation and growth process has been developed to construct complex nanostructured films step‐by‐step from aqueous solutions, as reported by Liu, Voigt, and co‐workers on p. 335. This method can be applied to a wide range of materials, and can be combined with top–down techniques to create spatially resolved micropatterns. The cover figure shows images of oriented nanowires, nanoneedles, nanotubes, nanoplates and stacked columns, wagon‐wheels, hierarchical films based on wagon‐wheels, hierarchically ordered mesophase silicate, and micropatterned flower‐like structures. Nanostructured films with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy/chemical conversions. Low‐temperature, aqueous chemical routes have been widely investigated for the synthesis of continuous films, and arrays of oriented nanorods and nanotubes. More recently, aqueous‐phase routes have been used to produce films composed of more complex crystal structures. In this paper, we discuss recent progress in the synthesis of complex nanostructures through sequential nucleation and growth processes. We first review the use of multistage, seeded‐growth methods to synthesize a wide range of nanostructures, including oriented nanowires, nanotubes, and nanoneedles, as well as laminated films, columns, and multilayer heterostructures. We then describe more recent work on the application of sequential nucleation and growth to the systematic assembly of large arrays of hierarchical, complex, oriented, and ordered crystal architectures. The multistage aqueous chemical route is shown to be applicable to several technologically important materials, and therefore may play a key role in advancing complex nanomaterials into applications.  相似文献   

11.
We report the fabrication of optically pumped solid‐state polymer lasers based on the semiconducting polymer poly(9,9‐dioctylfluorene) (PFO) using resonator structures that offer one‐ and two‐dimensional distributed feedback. The lasers are readily fabricated by solution deposition of thin polymer films on top of suitable grating microstructures etched into fused silica substrates. The devices operate in the blue spectral region, are highly efficient (slope efficiencies as high as 7.8 % are demonstrated), and exhibit very low threshold energies for oscillation (0.8 nJ per pulse). The operating characteristics of the lasers are investigated in detail. The transverse mode profiles and divergence of the output beams are measured and correlated with the internal lasing modes and the feedback mechanism present in the resonators. Additionally, broadband tuning of the emission wavelength over a range of ~ 40 nm is demonstrated by controlling the supported resonant frequency of the laser cavities.  相似文献   

12.
Surface plasmon resonance (SPR)‐enhanced optical transmission is actively controlled by an electrochromism of conducting polymer thin films. Polyaniline and poly(3,4‐ethylenedioxythiophene) thin films are deposited on a thin gold grating surface. SPR‐enhanced optical transmission is demonstrated by irradiating white light on the conducting polymer thin film–gold grating surface and detecting the transmitted light from the back side. The transmission SPR system is combined with an electrochemical setup to manipulate the resonance. The wavelength of the sharp peak in the transmission light spectra is tuned by electrochemical doping/dedoping of the conducting polymer thin films. The present study of controllable SPR‐enhanced optical transmission should provide novel active plasmonic devices such as active bandpass filters or biosensors.  相似文献   

13.
The high‐precision deposition of highly crystalline organic semiconductors by inkjet printing is important for the production of printed organic transistors. Herein, a facile nonconventional lithographic patterning technique is developed for fabricating banks with microwell structures by inkjet printing solvent droplets onto a polymer layer, thereby locally dissolving the polymer to form microwells. The semiconductor ink is then inkjet‐printed into the microwells. In addition to confining the inkjet‐printed organic semiconductor droplets, the microwells provide a platform onto which organic semiconductor molecules crystallize during solvent evaporation. When printed onto the hydrophilic microwells, the inkjet‐printed 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS_PEN) molecules undergo self‐organization to form highly ordered crystalline structures as a result of contact line pinning at the top corner of the bank and the outward hydrodynamic flow within the drying droplet. By contrast, small crystallites form with relatively poor molecular ordering in the hydrophobic microwells as a result of depinning of the contact line along the walls of the microwells. Because pinning in the hydrophilic microwells occurred at the top corner of the bank, treating the surfaces of the dielectric layer with a hydrophobic organic layer does not disturb the formation of the highly ordered TIPS_PEN crystals. Transistors fabricated on the hydrophilic microwells and the hydrophobic dielectric layer exhibit the best electrical properties, which is explained by the solvent evaporation and crystallization characteristics of the organic semiconductor droplets in the microwell. These results indicate that this technique is suitable for patterning organic semiconductor deposits on large‐area flexible substrates for the direct‐write fabrication of high‐performance organic transistors.  相似文献   

14.
The design and preparation of porous materials with controlled structures and functionalities is crucial to a variety of absorption‐ or separation‐relevant applications, including CO2 capture. Here, novel functional polymeric materials with three‐dimensionally ordered macroporous (3DOM) structures are prepared by using colloidal crystals as templates using relatively simple, rapid, and inexpensive approaches. These ordered structures are used for the reversible CO2 capture from ambient air by humidity swing. Typically, the colloidal crystal template is synthesized from polymer latex particles of poly(methyl methacrylate) (PMMA) or polystyrene (PS). To maintain the functionality of the material, it is important to prevent the porous structure collapsing, which can occur by the hydrolysis of the ester bonds in conventional crosslinkers under basic conditions. This hydrolysis can be prevented by using a water‐soluble crosslinker containing two quaternary ammonium moieties, which can be used to prepare stable porous crosslinked polymers with the monomer (vinylbenzyl)trimethylammonium chloride (VBTMACl) and using a PMMA‐based colloidal crystal template. The hydroxide‐containing monomer and dicationic crosslinker are synthesized from their chloride precursors, avoiding the ion‐exchange step which causes shrinkage of the pores. An analysis of different methods for infiltrating the monomer solution into the colloidal crystal template shows that infiltration using capillary forces leads to fewer defects than infiltration under a partial vacuum. In addition, functional macroporous films with micrometer thickness are prepared from a template of PS‐based colloidal crystals in a thin film. In general, the colloidal crystal templated materials showed improved CO2 absorption/desorption rates and swing sizes compared to a commercially available material with similar functional groups. This work could easily be extended to create a new generation of ordered macroporous polymeric materials with tunable functionalities for other applications.  相似文献   

15.
The preparation of hexagonally ordered metallic nanodots was studied in detail with emphasis on the chemical state of the resulting particles. To obtain these dots, in a first step micellar structures were formed from diblock copolymers in solution. The reverse micelles themselves are capable of ligating defined amounts of a metal salt within their cores, acting as nanoreactors. After transfer of the metal‐loaded reverse micelles onto a substrate, the polymer was removed by means of different plasmas (oxygen and/or hydrogen), which also allow the metal salt to be reduced to the metallic state. In this way, ordered arrays of metallic nanodots can be prepared on various substrates. By adjusting the appropriate parameters, the separation and the size of the dots can be varied and controlled. To determine their purity, chemical state, and surface cleanliness—all of which are crucial for subsequent experiments since nanoscale structures are intrinsically surface dominated—in‐situ X‐ray photoelectron spectroscopy (XPS) and ex‐situ transmission electron microscopy (TEM) were applied, also giving information on the formation of the nanodots.  相似文献   

16.
利用光栅侧面耦合技术多为单波长或窄带光耦合,用于光纤激光器泵浦、光波导集成等领域,而用于可见光宽带耦合的研究很少。通过在波导上集成亚波长衍射光栅结构,可以引导太阳光在波导的侧面进行出光汇集,作为一种新型的太阳能集光器结构。利用时域有限差分算法软件(FDTD)对光栅结构进行仿真,以获得最大衍射效率的光栅结构参数,并对不同入射角度下的衍射耦合效率进行了分析。结果显示,在宽波段的光谱范围内,以上光栅结构均达到较好的衍射效率,其中闪耀光栅衍射效率最大,其衍射效率可达48.8%。这种利用亚波长衍射光栅结构的小型集光器有望应用在有关太阳能能量的收集应用中,例如照明、太阳能电池等。  相似文献   

17.
Micro‐ and nanostructuring of conjugated polymers are of critical importance in the fabrication of molecular electronic devices as well as photonic and bandgap materials. The present report delineates the single‐step self‐organization of highly ordered structures of functionalized poly(p‐phenylene)s without the aid of either a controlled environment or expensive fabrication methodologies. Microporous films of these polymers, with a honeycomb pattern, were prepared by direct spreading of the dilute polymer solution on various substrates, such as glass, quartz, silicon wafer, indium tin oxide, gold‐coated mica, and water, under ambient conditions. The polymeric film obtained from C12PPPOH comprises highly periodic, defect‐free structures with blue‐light‐emitting properties. It is expected that such microstructured, conjugated polymeric films will have interesting applications in photonic and optoelectronic devices. The ability of the polymer to template the facile micropatterning of nanomaterials gives rise to hybrid films with very good spatial dispersion of the carbon nanotubes.  相似文献   

18.
Mg-15.4Gd-1.6Nd合金200℃时效初期的结构分析   总被引:1,自引:0,他引:1  
本文利用高分辨透射电子显微(HRTEM)技术并结合增强漫散射信息的HRTEM像处理分析方法研究了Mg-15.4Gd-1.6Nd(wt.%)合金200℃时效0.5 h后的结构特征。结果表明,合金时效初期的结构表现为稀土(RE)原子再分布形成的各种局域有序结构,其尺寸很小,一般只有几个nm,处于析出相形成的胚芽阶段。这些结构与传统意义上的β″相(DO19结构)有区别,本文称为β″关联相。在原子层次研究了β″关联相的结构,认为其由单层DO19结构、DO19结构和RE原子聚集三种基本的团簇单元组成。并利用高分辨像模拟法和动力学衍射模拟法进行了计算,结果表明本文建立的结构模型是合理的。  相似文献   

19.
The morphology and wetting properties of coatings prepared using fully‐ covered, mono‐ and bicomponent polymeric Janus particles are investigated and compared. The particles are adsorbed on silica wafers, which were preliminarily coated by thin layers of chemically grafted polymer. The fully‐covered particles form hexagonally packed layers with very hydrophobic wetting properties. In contrast, the Janus particles tend to form aggregates. This is possible due to their ability to self‐assemble and form hierarchical structured aggregates in dispersions. The deposition of these agglomerates on the substrate leads to the formation of hierarchical rough layers which possess a certain level of fractality. The obtained layers are either very hydrophobic or ultra‐hydrophobic, depending on the chemical structure of the polymers grafted to the Janus particles, on the nature of supported substrate, and on the level of aggregation of Janus particles into hierarchical structures. The obtained findings could be very important for design of novel materials with advanced properties.  相似文献   

20.
A novel microporous templated carbon material doped with nitrogen is synthesized by using a two‐step nanocasting process using acrylonitrile (AN) and propylene as precursors, and Na–Y zeolite as a scaffold. Liquid‐phase impregnation and in situ polymerization of the nitrogenated precursor inside the nanochannels of the inorganic scaffold, followed by gas‐phase impregnation with propylene, enables pore‐size control and functionality tuning of the resulting carbon material. The material thereby obtained has a narrow pore‐size distribution (PSD), within the micropore range, and a large amount of heteroatoms (i.e., oxygen and nitrogen). In addition, the carbon material inherits the ordered structure of the inorganic host. Such features simultaneously present in the carbon result in it being ideal for use as an electrode in a supercapacitor. Although presenting a moderately developed specific surface area (SBET = 1680 m2 g–1), the templated carbon material displays a large gravimetric capacitance (340 F g–1) in aqueous media because of the combined electrochemical activity of the heteroatoms and the accessible porosity. This material can operate at 1.2 V in an aqueous medium with good cycleability—‐beyond 10 000 cycles—and is extremely promising for use in the development of high‐energy‐density supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号