共查询到20条相似文献,搜索用时 0 毫秒
1.
To evaluate the potential of polyester‐based ionomers as biomaterials, we have characterized them in terms of crystallization behavior, degradation, and in‐vitro cellular interactions. The polymers used are poly(butylene succinate)‐based ionomers (PBSis) with 1 to 5 mol‐% dimethyl 5‐sodium sulfoisophthalate. Even a few incorporated ionic groups significantly decreases the folding surface energy, indicating that folding into crystalline lamellae is more difficult for chains restricted by ionic aggregates. Transmission electron microscopy (TEM) does not reveal any distinct aggregation of ionic clusters following hydrolytic degradation, which suggests that the physical crosslinkage due to ionic interactions is vulnerable to hydrolysis. The in‐vitro cellular interactions of polyester‐based ionomers is assessed by the culture of human dermal fibroblasts with PBSi extracts or in direct contact with the PBSi films. Cells on PBSi films and in their extracts exhibit appropriate specific growth rates and normal metabolic function regardless of the incorporated ionic content compared with poly[(D ,L ‐lactic acid)‐co‐(glycolic acid)] (75:25, PLGA), which is well known to be biocompatible. The cells growing on PBSi films spread to a sufficient extent, displaying relatively active filopodial growth, as compared to that of parent PBS. These results suggest that the conspicuous topology and hydrophilic nature of the ionomer surface affect cellular interactions, and that this ionomer therefore has potential applications as a biomaterial. 相似文献
2.
D. Ehre H. Cohen V. Lyahovitskaya A. Tagantsev I. Lubomirsky 《Advanced functional materials》2007,17(7):1204-1208
A model of structural transformations of amorphous into quasi‐amorphous BaTiO3 is suggested. The model is based on previously published data and on X‐ray photoelectron spectroscopy data presented in the current report. Both amorphous and quasi‐amorphous phases of BaTiO3 are made up of a network of slightly distorted TiO6 octahedra connected in three different ways: by apices (akin to perovskite), edges, and faces. Ba ions in these phases are located in the voids between the octahedra, which is a nonperovskite environment. These data also suggest that Ba ions compensate electrical‐charge imbalance incurred by randomly connected octahedra and, thereby, stabilize the TiO6 network. Upon heating, the edge‐to‐edge and face‐to‐face connections between TiO6 octahedra are severed and then reconnected via apices. Severing the connections between TiO6 octahedra requires a volume increase, suppression of which keeps some of the edge‐to‐edge and face‐to‐face connections intact. Transformation of the amorphous thin films into the quasi‐amorphous phase occurs during pulling through a steep temperature gradient. During this process, the volume increase is inhomogeneous and causes both highly anisotropic strain and a strain gradient. The strain gradient favors breaking those connections, which aligns the distorted TiO6 octahedra along the direction of the gradient. As a result, the structure becomes not only anisotropic and non‐centrosymmetric, but also acquires macroscopic polarization. Other compounds may also form a quasi‐amorphous phase, providing that they satisfy the set of conditions derived from the suggested model. 相似文献
3.
J.C. Stendahl E.R. Zubarev M.S. Arnold M.C. Hersam H.‐J. Sue S.I. Stupp 《Advanced functional materials》2005,15(3):487-493
We have previously reported that small quantities of self‐assembling molecules known as dendron rodcoils (DRCs) can be used as supramolecular additives to modify the properties of polystyrene (PS). These molecules spontaneously assemble into supramolecular nanoribbons that can be incorporated into bulk PS in such a way that the orientation of the polymer is significantly enhanced when mechanically drawn above the glass‐transition temperature. In the current study, we more closely evaluate the structural role of the DRC nanoribbons in PS by investigating the mechanical properties and deformation microstructures of polymers modified by self‐assembly. In comparision to PS homopolymer, PS containing small amounts (≤ 1.0 wt.‐%) of self‐assembling DRC molecules exhibit greater Charpy impact strengths in double‐notch four‐point bending and significantly greater elongations to failure in uniaxial tension at 250 % prestrain. Although the DRC‐modified polymer shows significantly smaller elongations to failure at 1000 % prestrain, both low‐ and high‐prestrain specimens maintain tensile strengths that are comparable to those of the homopolymer. The improved toughness and ductility of DRC‐modified PS appears to be related to the increased stress whitening and craze density that was observed near fracture surfaces. However, the mechanism by which the self‐assembling DRC molecules toughen PS is different from that of conventional additives. These molecules assemble into supramolecular nanoribbons that enhance polymer orientation, which in turn modifies crazing patterns and improves impact strength and ductility. 相似文献
4.
J.C. Stendahl E.R. Zubarev M.S. Arnold M.C. Hersam H.‐J. Sue S.I. Stupp 《Advanced functional materials》2005,15(3)
The cover shows tensile failure of a sample of pure polystyrene (left), and a polystyrene sample with greater impact strength containing 1% by weight of dispersed nanoribbons (right), as reported in work by Stupp and co‐workers on p. 487. The nanoribbons are formed by self‐assembly of molecules known as dendron rodcoils (DRCs) in styrene monomer, resulting in the formation of a gel. This gel can then be polymerized thermally. We have previously reported that small quantities of self‐assembling molecules known as dendron rodcoils (DRCs) can be used as supramolecular additives to modify the properties of polystyrene (PS). These molecules spontaneously assemble into supramolecular nanoribbons that can be incorporated into bulk PS in such a way that the orientation of the polymer is significantly enhanced when mechanically drawn above the glass‐transition temperature. In the current study, we more closely evaluate the structural role of the DRC nanoribbons in PS by investigating the mechanical properties and deformation microstructures of polymers modified by self‐assembly. In comparision to PS homopolymer, PS containing small amounts (≤ 1.0 wt.‐%) of self‐assembling DRC molecules exhibit greater Charpy impact strengths in double‐notch four‐point bending and significantly greater elongations to failure in uniaxial tension at 250 % prestrain. Although the DRC‐modified polymer shows significantly smaller elongations to failure at 1000 % prestrain, both low‐ and high‐prestrain specimens maintain tensile strengths that are comparable to those of the homopolymer. The improved toughness and ductility of DRC‐modified PS appears to be related to the increased stress whitening and craze density that was observed near fracture surfaces. However, the mechanism by which the self‐assembling DRC molecules toughen PS is different from that of conventional additives. These molecules assemble into supramolecular nanoribbons that enhance polymer orientation, which in turn modifies crazing patterns and improves impact strength and ductility. 相似文献
5.
Solid‐state grinding is a simple and effective method to include guest species into the channels of ordered mesoporous materials with a different degree of filling. After calcination, a monolayer or several monolayers of guest species can not only form highly dispersed oxide species and other surface species on the hosts whether the template is occluded in the channels or not, but the guest species can also fill the mesoporous channels in the host and thus lead to nanowires or nanoarrays. Solid‐state salt inclusion is faster and more convenient than other inclusion routes. The absence of a solvent not only saves the time otherwise needed for evaporation but also leads to a higher degree of filling through a simple inclusion step as the void space in the pores is not occupied by the solvent. Also, the lack of competitive adsorption of solvent molecules enhances the interaction between the guest species included and the silica wall, which facilitates the high dispersion of oxide species. However, host–guest interactions that are too strong may disturb the self‐crystallization of guest species in the mesopores leading to imperfect nanocasting of the mesostructure. 相似文献
6.
M. Greenberg E. Wachtel I. Lubomirsky J. Fleig J. Maier 《Advanced functional materials》2006,16(1):48-52
The elastic behavior of solids with a large concentration of interacting point defects has been analyzed. The analysis predicts that, in such solids, mechanical stress may be partially relieved by a shift in the association/dissociation equilibrium of the point defects. Association/dissociation of the point defects in response to an external stress will proceed until the decrease in elastic energy is balanced by the increased chemical energy of the defect distribution. The resulting change in the linear dimensions may be called “chemical strain”, in analogy to the previously studied “chemical stress”. A solid in which chemical strain may develop in response to external stress should exhibit two distinct Young's moduli: relaxed, on a time scale which allows the defects to reach equilibrium; and unrelaxed, on a time scale which is too short for the defect equilibrium to be established. Our analysis suggests that materials exhibiting the chemical‐strain effect are capable of reversible adaptation to external mechanical constraints. Measurements on a self‐supported film of Ce0.8Gd0.2O1.9 strongly support the theoretical predictions. 相似文献
7.
Tetrakis[(4‐(4′‐(2″,5″‐dioctyloxy‐4″‐(4‴‐(2′‴,5′‴‐dioctyloxy‐4′‴‐styryl)styryl)styryl)styryl)styryl)phenyl]methane (T‐6R‐OC8H17) is an organic chromophore that consists of four optoelectronic fragments (“arms”) connected to a tetrahedral point of convergence (carbon). Bulk samples are amorphous as determined by powder diffraction, while differential scanning calorimetry (DSC) is sometimes ambiguous. Film forming properties were studied by atomic force microscopy (AFM) and fluorescence microscopy as a function of casting solvent and heat treatment. The film forming qualities are useful for the fabrication of light‐emitting diodes with low turn‐on voltages. Device performance is also history dependent. The relationship between bulk morphology, film topology, photoluminescence (PL) properties, and light‐emitting diode (LED) performance is discussed. A comparison of these compounds against the parent oligo(phenylenevinylene) arms, with respect to morphology, topology, and PL properties is also presented. 相似文献
8.
B. Zhang Z.‐M. Wang M. Kurmoo S. Gao K. Inoue H. Kobayashi 《Advanced functional materials》2007,17(4):577-584
Chiral magnets are obtained by inclusion of chiral guest molecules into the channels of an achiral nanoporous ferrimagnet consisting of the Mn3(HCOO)6 ( 1 ) framework. Insertion of the R or the S enantiomer of 2‐chloropropan‐1‐ol (CH3C*HClCH2OH) in the chiral pores of the previously emptied framework (space group P21/c) results in the two corresponding chiral solids ( 1R and 1S , space group P21), while insertion of a racemic mixture of the two enantiomers retains the achirality of the host for the meso solid ( 1RS , space group P21/c). The R guest is ordered in the M channels while the S guest is ordered in the P channels. In contrast, the R guests in the P channels and the S guests in the M channels are disordered on two crystallographic orientations. For the racemic mixture of the two enantiomers in 1RS , random disorder of guests in both channels is observed. Thus, the localization of the guest molecule depends on the nature of the surface to recognize the guest of a particular chirality. The guest inclusion compounds are thermally stable. The 1R and 1S compounds are optically active. All the compounds adopt a ferrimagnetic ground state. Compared to the host framework of 1 without guest, the Curie temperature decreases for both 1R and 1S but increases for 1RS . The additional interactions between the framework and the inserted guest alcohols strengthen the lattice via hydrogen bonds and other electrostatic forces, and it might account for the significant lowering of the lattice contribution as well as the magnetic component to the specific heat capacity upon guest loading. 相似文献
9.
The purpose of this paper is to connect two critical aspects of nanocomposite materials engineering: the knowledge of the orientational distribution of quiescent or flowing anisotropic macromolecules, and homogenization theory of composites with spheroidal inclusions at low volume fractions. The nano‐elements considered herein are derived from the class of high‐aspect‐ratio nematic polymers, either rod‐like or platelet spheroids. By combining the two features, we derive the effective electrical conductivity tensor in closed form. Scaling properties of enhanced conductivity versus volume fraction and weak shear rate become explicit. The most dramatic effect is that the effective conductivity tensor inherits hysteresis, bi‐stability, and discontinuous jumps from the isotropic–nematic first‐order phase transition. These formulas reveal finer estimates that depend on a competition between two inherently extreme parameters in nematic polymer nanocomposites: the molecular aspect ratio and the conductivity ratio of the inclusions and matrix. Herein, we confine our attention to steady monodomain orientational distributions at rest and in weak shear flows, which serve as benchmarks and guides for future extensions and numerical approaches. 相似文献
10.
Jongsik Yoon Sungmee Cho Jung‐Hyun Kim JoonHwan Lee Zhenxing Bi Adriana Serquis Xinghang Zhang Arumugam Manthiram Haiyan Wang 《Advanced functional materials》2009,19(24):3868-3873
A thin layer of a vertically aligned nanocomposite (VAN) structure is deposited between the electrolyte, Ce0.9Gd0.1O1.95 (CGO), and the thin‐film cathode layer, La0.5Sr0.5CoO3 (LSCO), of a thin‐film solid‐oxide fuel cell (TFSOFC). The self‐assembled VAN nanostructure contains highly ordered alternating vertical columns of CGO and LSCO formed through a one‐step thin‐film deposition process that uses pulsed laser deposition. The VAN structure significantly improves the overall performance of the TFSOFC by increasing the interfacial area between the electrolyte and cathode. Low cathode polarization resistances of 9 × 10?4 and 2.39 Ω were measured for the cells with the VAN interlayer at 600 and 400 °C, respectively. Furthermore, anode‐supported single cells with LSCO/CGO VAN interlayer demonstrate maximum power densities of 329, 546, 718, and 812 mW cm?2 at 550, 600, 650, and 700 °C, respectively, with an open‐circuit voltage (OCV) of 1.13 V at 550 °C. The cells with the interlayer triple the overall power output at 650 °C compared to that achieved with the cells without an interlayer. The binary VAN interlayer could also act as a transition layer that improves adhesion and relieves both thermal stress and lattice strain between the cathode and the electrolyte. 相似文献
11.
G.N. Mol K.D. Harris C.W.M. Bastiaansen D.J. Broer 《Advanced functional materials》2005,15(7):1155-1159
Films of liquid‐crystal networks with a splayed molecular alignment over their cross‐section display a well‐controlled deformation as a function of temperature. The deformation can be explained in terms of differences in thermal expansion depending on the average molecular orientation of the mesogenic centers of the monomeric units. The thermal expansion of the anisotropic polymers has been characterized as a function of their molecular structure and the polymerization conditions. As a reference, films with an in‐plane 90° twist have also been studied and compared with the splayed, out‐of‐plane molecular rotation. The twisted films show a complex macroscopic deformation owing to the formation of saddle‐like geometries, whereas the deformation of the splayed structured is smooth and well controlled. The deformation behavior is anticipated to be of relevance for polymer‐based microelectromechanical system (MEMS) technology. 相似文献
12.
The macroscopic viscoelastic properties of a physical hydrogel are reversibly modulated by tuning the microscopic hydrogen‐bonding interactions with pH. The hydrogel forms at a rather low concentration of the multi‐pyridyl‐based gelator, N, N′, N″‐tris(3‐pyridyl)trimesic amide. The yield stress of the hydrogel is greatly enhanced from 10 to 769 Pa by changing the pH from 7.0 to 5.0. At pH 7.0, the amide molecules are assembled into an ordered structure as a result of the hydrogen bonds between the amide N–H bond and the nitrogen on the pyridyl group (N–H…Py). Fourier transform (FT) IR spectroscopy indicates that hydrogen bonds of N–H…Py are partially broken because the pyridyl groups are partly protonated at pH 5.0. This condition leads to a highly branched and homogeneous fibrillar network, which is confirmed by X‐ray diffraction (XRD) measurements and field‐emission scanning electron microscopy (FESEM) images. Highly branched fibrillar networks create more compartments and greatly increase the interfacial tension that is required to hold the solvent in the gel, thereby increasing the yield stress to 769 Pa. By further increasing the acidity of the hydrogel to pH < 3.0, the gel becomes a sol. Both the change in the viscoelastic properties and the sol–gel transition are reversible and controllable in the material. 相似文献
13.
H.‐C. Su F.‐C. Fang T.‐Y. Hwu H.‐H. Hsieh H.‐F. Chen G.‐H. Lee S.‐M. Peng K.‐T. Wong C.‐C. Wu 《Advanced functional materials》2007,17(6):1019-1027
Highly efficient orange and green emission from single‐layered solid‐state light‐emitting electrochemical cells based on cationic transition‐metal complexes [Ir(ppy)2sb]PF6 and [Ir(dFppy)2sb]PF6 (where ppy is 2‐phenylpyridine, dFppy is 2‐(2,4‐difluorophenyl)pyridine, and sb is 4,5‐diaza‐9,9′‐spirobifluorene) is reported. Photoluminescence measurements show highly retained quantum yields for [Ir(ppy)2sb]PF6 and [Ir(dFppy)2 sb]PF6 in neat films (compared with quantum yields of these complexes dispersed in m‐bis(N‐carbazolyl)benzene films). The spiroconfigured sb ligands effectively enhance the steric hindrance of the complexes and reduce the self‐quenching effect. The devices that use single‐layered neat films of [Ir(ppy)2sb]PF6 and [Ir(dFppy)2sb]PF6 achieve high peak external quantum efficiencies and power efficiencies of 7.1 % and 22.6 lm W–1) at 2.5 V, and 7.1 % and 26.2 lm W–1 at 2.8 V, respectively. These efficiencies are among the highest reported for solid‐state light‐emitting electrochemical cells, and indicate that cationic transition‐metal complexes containing ligands with good steric hindrance are excellent candidates for highly efficient solid‐state electrochemical cells. 相似文献
14.
H.‐L. Cheng Y.‐S. Mai W.‐Y. Chou L.‐R. Chang X.‐W. Liang 《Advanced functional materials》2007,17(17):3639-3649
Thickness‐dependent crystal structure, surface morphology, surface energy, and molecular structure and microstructure of a series of polycrystalline pentacene films with different film thickness ranging from several monolayers to the several hundred nanometers have been investigated using X‐ray diffraction (XRD), atomic force microscopy (AFM), contact angle meter, and Raman spectroscopy. XRD studies indicate that thin film polymorphs transformation behaviours are from the orthorhombic phase to the thin‐film phase and then to the triclinic bulk phase as measured by the increased tilt angle (θtilt) of the pentacene molecule from the c‐axis toward the a‐axis. We propose a growth model that rationalizes the θtilt increased along with increasing film thickness in terms of grain size and surface energy varying with film growth using AFM combined with contact angle measurements. The vibrational characterizations of pentacene molecules in different thickness films were investigated by Raman spectroscopy compared to density functional theory calculations of an isolated molecule. In combination with XRD and AFM the method enables us to distinguish the molecular microstructures in different thin film polymorphs. We proposed a methodology to probe the microscopic parameters determining the carrier transport properties based on Davydov splitting and the characteristics of aromatic C–C stretching modes in Raman spectra. When compared to the triclinic bulk phase at a high thickness, we suggest that the first few monolayer structures located at the dielectric surface could have inferior carrier transport properties due to weak intermolecular interactions, large molecular relaxation energy, and more grain boundaries. 相似文献
15.
L. Abad V. Laukhin S. Valencia A. Gaup W. Gudat L. Balcells B. Martínez 《Advanced functional materials》2007,17(18):3918-3925
Complex oxides with perovskite structure are the ideal arena to study a plethora of physical properties including superconductivity, ferromagnetism, ferroelectricity, piezoelectricity and more. Among them, transition metal oxides are especially relevant since they present large electronic correlations leading to a strong competition between lattice, charge, spin, and orbital degrees of freedom. In particular, manganese perovskites oxides exhibit half‐metallic character and colossal magnetoresistive response rendering them as the ideal materials to develop novel concepts of oxide‐electronic devices and for the study of fundamental physical interactions. Due to the close similarity between kinetic energy of charge carriers and Coulomb repulsion, tiny perturbations caused by small changes in temperature, magnetic or electric fields, strain and so forth may drastically modify the magnetic and transport properties of these materials. In particular clarifying the role of interfacial strain in manganite thin films is interesting not only for device applications but also for basic understanding of physical interactions. A better comprehension of such strongly correlated systems might lead to control the different degrees of freedom in a near future contributing to the development of the so called orbitronics, i.e. controlling and modifying at will the orbital orientation of the 3d levels in transition metals. Here we reveal the importance of interfacial strain in high quality epitaxial thin films of La2/3Ca1/3MnO3 (LCMO), grown on top of SrTiO3 (STO) and NdGaO3 (NGO) (001)‐oriented substrates. We show that in such systems interfacial strain due to lattice mismatch lifts the degeneracy of the eg and t2g orbitals close to the film/substrate interface inducing Jahn‐Teller like distortions and promoting selective orbital occupancy and the appearance of an orbital glass insulating state in an otherwise ferromagnetic metallic material. These results highlight the role of strain and identify it as a key parameter in orbital control. 相似文献
16.
A novel finger‐sensing nanocomposite with remarkable and reversible piezoresistivity is successfully fabricated by dispersing homogeneously conductive graphite nanosheets (GNs) in a silicone rubber (SR) matrix. Because of the high aspect ratio of the graphite nanosheets, the nanocomposite displays a very low percolation threshold. The SR/GN nanocomposite with a volume fraction of conductive nanosheets closest to that for the percolation threshold presents a sharp positive‐pressure coefficient effect of the resistivity under very low pressure, namely, in the finger‐pressure range (0.3–0.7 MPa), whereby the abrupt transition could be attributed to compressive‐stress‐induced deformation of the conducting network. The super‐sensitive piezoresistive behavior of the nanocomposite is accounted for by an extension of the tunneling conduction theory which provides a good approximation to the piezoresistive effect. 相似文献
17.
18.
Atomistic simulations are employed to probe the deformation behavior of experimentally observed top‐down and bottom‐up face‐centered cubic silver nanowires. Stable, <110> oriented nanowires with a rhombic and truncated‐rhombic cross section are considered, representative of top‐down geometries, as well as the multiply twinned pentagonal nanowire that is commonly fabricated in a bottom‐up approach. The tensile deformation of a stable, experimentally observed structure is simulated to failure for each nanowire structure. A detailed, mechanistic explanation of the initial defect nucleation is provided for each nanowire. The three geometries are shown to exhibit different levels of strength and to deform by a range of mechanisms depending on the nanowire structure. In particular, the deformation behavior of top‐down and bottom‐up nanowires is shown to be fundamentally different. The yield strength of nanowires ranging from 1 to 25 nm in diameter is provided and reveals that in addition to cross‐sectional diameter, the strength of the nanowires is strongly tied to the structure. This study demonstrates that nanowire structure and size may be tailored for specific mechanical requirements in nanometer‐scale devices. 相似文献
19.
Thermal conductance measurements of individual single‐ (S), double‐ (D), and multi‐ (M) walled (W) carbon nanotubes (CNTs) grown using thermal chemical vapor deposition between two suspended microthermometers are reported. The crystal structure of the measured CNT samples is characterized in detail using transmission electron microscopy (TEM). The thermal conductance, diameter, and chirality are all determined on the same individual SWCNT. The thermal contact resistance per unit length is obtained as 78–585 m K W?1 for three as‐grown 10–14 nm diameter MWCNTs on rough Pt electrodes, and decreases by more than 2 times after the deposition of amorphous platinum–carbon composites at the contacts. The obtained intrinsic thermal conductivity of approximately 42–48, 178–336, and 269–343 W m?1 K?1 at room‐temperature for the three MWCNT samples correlates well with TEM‐observed defects spaced approximately 13, 20, and 29 nm apart, respectively; whereas the effective thermal conductivity is found to be limited by the thermal contact resistance to be about 600 W m?1 K?1 at room temperature for the as‐grown DWCNT and SWCNT samples without the contact deposition. 相似文献
20.
Jeffrey H. Drese Sunho Choi Ryan P. Lively William J. Koros Daniel J. Fauth McMahan L. Gray Christopher W. Jones 《Advanced functional materials》2009,19(23):3821-3832
Hyperbranched aminosilica (HAS) adsorbents are prepared via the ring‐opening polymerization of aziridine in the presence of mesoporous silica SBA‐15 support. The aminopolymers are covalently bound to the silica support and capture CO2 reversibly in a temperature swing process. Here, a range of HAS materials are prepared with different organic loadings. The effects of organic loading on the structural properties and CO2 adsorption properties of the resultant hybrid materials are examined. The residual porosity in the HAS adsorbents after organic loading, as well as the molecular weights and degrees of branching for the separated aminopolymers, are determined to draw a relationship between adsorbent structure and performance. Humid adsorption working capacities and apparent adsorption kinetics are determined from experiments in a packed‐bed flow system monitored by mass spectrometry. Dry adsorption isotherms are presented for one HAS adsorbent with a high amine loading at 35 and 75 °C. These combined results establish the relationships between adsorbent synthesis, structure, and CO2 adsorption properties of the family of HAS materials. 相似文献