首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Hydroxyethyl methyl acrylate (HEMA) capped waterborne polyurethane‐acrylate (WPUA) oligomer was firstly prepared from isophorone diisocyanate (IPDI), polyether polyol (NJ‐220), dimethylolbutanoic acid (DMBA), HEMA via in‐situ and anionic self‐emulsifying method. Ultraviolet (UV) curable WPUA coating was obtained from HEMA‐capped oligomer, butyl acrylate (BA) and multifunctional acrylates (TPGDA) as reactive diluents, and Darocur 1173 as photoinitiator. The physical properties of WPUA oligomers, such as particle size, apparent viscosity, and surface tension were investigated. Some mechanical properties of UV‐WPUA films, such as contact angles, thermal properties, and solvent (water, HCl, NaOH, NaCl, and ethanol) resistance of UV‐WPUA coating films were measured. The surface morphologies were measured by scanning electron microscope and atomic force microscope. The surface free energy of the UV‐cured film was calculated from contact angle measurements using the Lewis acid–base three liquids method. The specific UV‐WPUA coating was selected to protect the iron materials that observed the effect of the protection. The results indicate that the prepared UV‐WPUA coating has excellent protective behavior to metal iron materials and may offer some contributions to protect iron cultural relics. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3142–3152, 2013  相似文献   

2.
For improving the finishing performances of complicated three‐dimensional coated wood products (e.g., furniture) with some shadow zones in the absence of ultraviolet (UV) light, resulting in incomplete curing of UV coatings, the aim of this study was to investigate the characteristics and effects of curing process on the properties of epoxy acrylate UV/PU dual‐cured resin for wood coatings when compared with traditional UV and polyurethane (PU) coatings. The epoxy acrylate oligomer was synthesized for providing a double bond of acryloyl group and a secondary hydroxyl group. The UV/PU dual‐cured coating was formulated with epoxy acrylate resin/tripropylene glycol diacrylate (TPGDA) monomer by the weight ratio of 80/20, 3% dosage of benzil dimethyl ketal as a photoinitiator, and the NCO/OH mole ratio of 1.0. The aromatic polymeric diphenylmethane diisocyanate was used as a hardener. The films of the dual‐cured coating, obtained from UV‐cured or room temperature‐cured process, showed an excellent tensile strength, elongation at break, impact resistance, and lightfastness when compared with traditional UV and PU coatings; especially, the adhesion of UV/PU dual‐cured coating by UV‐cured process was better than that of traditional UV coating. It can therefore be concluded that the epoxy acrylate oligomer‐based dual‐cured coating could readily be used for complicated wood products finishing. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
A UV‐curable polyurethane (PU)‐coating system containing phosphorus is formulated by the combination of photoinitiator, PU acrylate oligomer, and UV‐reactive phosphazene monomer. PU acrylate oligomer is prepared by the addition of 2‐hydroxyethylmethacrylate (HEMA) to NCO‐terminated PU prepolymer. UV‐reactive phosphazene monomer is derived from the HEMA substitution reaction to hexachlorocyclotriphosphazene (NPCl2)3. The curing reaction of this PU‐coating system is carried out by UV irradiation. The resultant UV‐cured PU‐coated films demonstrated better performance properties than those of original UV‐cured PU acrylate (UV‐PU) without UV‐reactive phosphazene monomer. Furthermore, their thermal properties are investigated by a thermogravimetric analyzer and a dynamic mechanical thermal analyzer, respectively. The combustion behaviors of these UV‐cured PU‐coated films are evaluated by the measurements of a limiting oxygen index and a cone calorimeter. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1980–1991, 2002  相似文献   

4.
Photopolymerization reactions of wood coatings under UV and visible light have been carried out. The influence of model phenolic derivatives found in wood extractives on the polymerization kinetics as well as the coating properties of clear coating formulations exposed to light in laboratory and industrial type conditions has been discussed as a function of various UV/visible or visible photoinitiating systems based on ketones and dyes. The properties of suitable formulations are discussed. Several kinds of efficient photoinitiating systems are particularly investigated such as isopropylthioxanthone/amine; bis-acylphosphine oxide derivative/isopropylthioxanthone/amine and Rose Bengal/amine/additive.  相似文献   

5.
A series of UV‐curable polyurethane acrylates (PUA0, FPUA3, FPUA6, FPUA 9 FPUA12, FPUA15, where the numbers indicate the wt % of perfluoroalkyl acrylate), were prepared from a reactive oligomer [4,4 ?‐dicyclohexymethanediisocyanate(H12MDI)/ poly(tetramethylene glycol)(PTMG)/2‐hydroxyethyl methacrylate (HEMA): 2/1/2 molar ratio, prepolymer:40 wt %] and diluents [methyl methacrylate (MMA, 20 wt %)/ isobornyl acrylate (IBOA, 40–25 wt %)/heptadecafluorodecyl methacrylate (PFA, 0–15 wt), total diluents: 60 wt %]. This study examined the effect of PFA/IBOA weight ratio on the properties of the UV‐curable polyurethane acrylates for antifouling coating materials. The as‐prepared UV‐curable coating material containing a 15 wt % PFA content in diluents (MMA/IBOA/PFA) form a heterogeneous mixture, indicating that a PFA content of approximately 15 wt % was beyond the limit of the dilution capacity of diluents for the oligomer. In the wavelength range of 400–800 nm, the UV‐cured PUA0 film sample was quite transparent (transmittance%: near 100%). On the other hand, the transmittance% of the FPUA film sample decreased markedly with increasing PFA content. XPS showed that the film‐air surface of the UV‐cured polyurethane acrylate film had a higher fluorine content than the film‐glass dish interface. As the PFA content increased from 0 to 12 wt %, the surface tension of the UV‐cured urethane acrylates decreased from 26.8 to 15.6 mN/m, whereas the water/methylene iodide contact angles of the film–air surface increased from 90.1/63.6° to 120.9/87.1°. These results suggest that the UV‐curable polyurethane acrylates containing a PFA content up to 12 wt % have strong potential as fouling‐release coating materials. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40603.  相似文献   

6.
Ultraviolet (UV)‐curing behavior of an epoxy acrylate resin system comprising an epoxy acrylate oligomer, a reactive diluent, and a photoinitiator was investigated by Fourier transform infrared (FTIR) spectroscopy. The conversion changes of the resin system containing 20 phr of 1,6‐hexanediol diacrylate as a reactive diluent and 2‐hydroxy‐2‐methyl‐1‐phenyl‐propan‐1‐one as a photoinitiator were measured under different UV‐curing conditions. The fractional conversion was calculated from the area of the absorption peak for the vinyl group vibration occurring at 810 cm?1. The effects of photoinitiator concentration, total UV dosage, one‐step or stepwise UV irradiation, UV intensity, atmosphere, and temperature on the curing behavior of the resin system were investigated. The conversion of the resin system increased rapidly at the initial stage of the UV‐curing process but increased very slowly after that. The final conversion of the resin system was mainly affected by total UV dosage. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1180–1185, 2005  相似文献   

7.
Different formulations were developed with EB-600 (Ebcryl-600), an epoxy acrylate oligomer in the presence of N-vinylpyrrolidone and trimethylol propane triacrylate. Thin films were prepared with these formulated solutions under ultraviolet (UV) radiation. These solutions were coated on a low-grade wood substrate (simul) and cured under UV light. Both UV-cured thin films and surface coatings were characterized, and the best formulations for coating wood surface were evaluated. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1997–2004, 1997  相似文献   

8.
Polyurethane–acrylate oligomer terminated with multiple unsaturated bonds was prepared using isophorone diisocyanate, (IPDI), methylene diphenyl diisocyanate, and polyols as monomers, using 2,2‐dimethylol propionic acid as hydrophilic chain extender, together with pentaerythritol triacrylate (PETA) as end‐capper. The UV‐curable waterborne polyurethane–acrylate (UV‐WPUA) composite emulsion was obtained by mixing the PUA oligomer with certain content of reactive diluents and then dispersing the mixture in water. The molecular structure of the polyurethane prepolymer, PUA oligomer, and UV‐cured polymer was investigated by Fourier transform infrared spectroscopy. The influence of the composition and content of the diluents and end‐capper on UV‐WPUA properties, including the emulsion stability, thermal property, water resistance, adhesion, hardness, glossiness of polymer film were studied. The results show that the WPUA emulsion has excellent stability, and the UV‐cured film features good hardness and remarkable water resistance when PETA is used as end‐capper and the end‐capping ratio of the polyurethane prepolymer is 70% and dipentaerythritol hexaacylate/dipropylene glycol diacrylate (mass ratio 1:1) is used as diluent. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45208.  相似文献   

9.
UV‐curable, novel, fluorinated polyether ether ketone urethane acrylate oligomer (FPEEKUA) has been synthesized and used as corrosion‐protector in sol–gel hybrid coatings for metallic substrates. Incorporation of FPEEKUA and sol–gel in the formulations improved coatings’ physical properties such as gel content, hardness, adhesion, gloss, flexibility, and contact angle. Due to strong interaction between acrylate and highly crosslinked structures, mechanical properties improved drastically with homogenously dispersed structures throughout the organic matrix, while water uptake values decreased and thermal stability and char yields increased. Highest contact angle values were measured up to 94° with shinny coatings. The results are important for two reasons. First, polyether ether ketone (PEEK) immiscibility problem are overcome by using reactive oligomer and benefitted from high performance properties of poly(arylene ether ketones) (PAEK)s in hybride coating applications. Second, Coatings combine the advantages of sol–gel with poly(arylene ether ketone urethane acrylate) (PAEKUA) oligomer and they can be used as barrier coatings in metal corrosion protection. Performance tests in corrosive mediums at room temperature of chlorine solution (bleach) for 24 h and also in a 10 wt% HCl solution for 92 h produced promising results for use in corrosion mitigation applications in highly corrosive downstream oil and gas industry. POLYM. ENG. SCI., 59:E146–E154, 2019. © 2018 Society of Plastics Engineers  相似文献   

10.
UV固化丙烯海松酸聚氨酯丙烯酸酯的合成及应用   总被引:1,自引:1,他引:0  
以2,4-甲苯二异氰酸酯(TDI)、丙烯海松酸二甘醇聚酯二元醇和丙烯酸羟丙酯(HPA)为主要原料合成了可紫外光固化的涂料用丙烯海松酸聚氨酯丙烯酸酯(APAPUA)低聚物。对产物进行了红外表征,并考察了其光固化行为。测试了APAPUA固化膜的硬度、柔韧性及其他力学性能,同时考察了其热稳定性。结果表明,该低聚物固化膜铅笔硬度达到4H,附着力1级,耐冲击性55 cm,初始分解温度245℃,具有固化速度快,力学性能及耐热性优良等特点,可以作为价格低廉的耐热性低聚物应用于光固化涂料。  相似文献   

11.
紫外光固化涂料的研究进展   总被引:2,自引:0,他引:2  
紫外光固化涂料由于固化速度快、涂膜质量高、环境污染少以及能耗低等优点,已经成为涂料工业中的一支重要生力军。本文介绍了紫外光固化涂料的固化原理,同时也对紫外光固化涂料中的光引发剂、活性单体、齐聚物、助剂等的发展现状进行了综述,重点介绍了混杂齐聚物、水性齐聚物、超支化齐聚物的研究进展。详细介绍了环氧丙烯酸酯、聚酯丙烯酸酯、聚氨酯丙烯酸酯类齐聚物的研究。紫外光固化涂料的水性化和粉末化将是紫外光固化涂料未来的发展方向。  相似文献   

12.
Nano‐TiO2 particles were first milled into butyl acetate or trimethylolpropane triacrylate (TMPTA) to obtain TSB and TST slurries, then embedded into epoxy acrylate to obtain UV‐curable coating. The influence of nano‐TiO2 particles on the photopolymerization kinetics, tack free time, thermal and optical properties of UV‐curable coatings was investigated. It was found that TST‐based coating had a decreasing but TSB‐based coating had an increasing UV cured rate in comparison with the pristine epoxy acrylate. Nevertheless, the TST‐based coating occupied shorter tack free time, good thermal property and UV absorbance than their corresponding TSB‐based coating. POLYM. ENG. SCI. 46:1402–1410, 2006. © 2006 Society of Plastics Engineers.  相似文献   

13.
This study analyzed the effects of ultraviolet curable urethane acrylate resin (UV resin) treatments on surface homogeneity, dimensional stability, and change in colors of medium‐ and small‐ diameter softwoods produced in Taiwan. The UV resins were formulated with urethane acrylate oligomer/methyl methacrylate (MMA) monomer by the weight ratio of 50/50, 60/40, 70/30, 80/20, and 90/10, and 3% of photoinitiator (benzil dimethyl ketal) by the total weight of UV resins was added, respectively. Four kinds of softwoods, including Taiwanina, China fir, Taiwan incense cedar and Japanese fir with a diameter of 10–15 cm were obtained from Hui‐Sun Forest Station, Taiwan. Results show that the oligomer derived from 2‐hydroxyethyl methacrylate (2‐HEMA) and polymeric toluene diisocyanate (PTDI) by the molar ratio of NCO/OH = 1.0 could be readily synthesized and the prepared UV resin were also easily applied to the woods at room temperature and normal pressure. The surface hardness and moisture excluding efficiency (MEE) of woods were markedly enhanced and correlated with the increased in oligomer content of the UV resins as well as the homogeneity of softwood surfaces were also improved. According to the antiswelling efficiency (ASE), the increased in dimensional stability of woods were achieved; especially for the lower specific gravity China fir had the greatest improved efficiency of 60.68% at oligomer/MMA ratio of 80/20. In addition, a massive, colorful, and warm feeling in sense of sight on UV resin‐treated wood, which would appeal to most people, was also obtained. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
In this article, a novel UV‐curable epoxy acrylate oligomer (BPEFPGMA) with high refractive index is successfully prepared through semi‐esterification reaction of 9,9‐bis[4‐(2‐hydroxyethoxy)phenyl]fluorene and phthalic anhydride, followed by end‐caping of glycidyl methacrylate. After 15 times’ repetitions, the process and properties of this oligomer are stable and reliable. The resulting BPEFPGMA exhibited low solvent content (≤1600 ppm), low viscosity (1900–2500 mPa s at 60°C), high refractive index (1.587 ± 0.003 at 20°C), and normal Mw (2550–3536 g/mol). The coating formulations of 1.57 UV‐curable glue are mixed with BPEFPGMA as reactive oligomer. Through the technology of UV‐curing forming, the corresponding brightness enhancement films are obtained. The resulting films exhibit normal structure, excellent adhesion (5B), good scratch resistance (50 g), and good abrasion resistance (50 g). They show excellent performance, and have reached the quality standard for use in liquid crystal display industry. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42386.  相似文献   

15.
Antimony doped tin oxide (ATO) nanoparticles were used as nanofillers to improve mechanical properties of UV‐cured polyester–acrylate films. To improve the dispersion of ATO nanoparticles in the polyester–acrylate resin matrix and to strengthen interfacial interactions between ATO nanoparticles and the resin matrix ATO nanoparticles were first organically modified with 3‐methacryloxypropyltrimethoxysilane (MPS). The modification of ATO nanoparticles with MPS was confirmed by FTIR spectroscopy and thermogravimetric analysis (TGA). UV‐curing behaviors of the nanocomposites films were investigated by FTIR spectroscopy. Compared with the film with neat ATO nanoparticles, the film with the same amount of MPS‐modified ATO nanoparticles showed slightly higher UV‐curing rate and final conversion. The mechanical properties of the nanocomposites films were measured by universal testing machine. The MPS‐modified ATO nanoparticles could improve considerably the mechanical properties of the UV‐cured polyester–acrylate nanocomposites films. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
The aim of the study was to correlate the characteristics of UV powder resins with the photochemical process and the final coating properties. RT-FTIR spectroscopy equipped with an environmental cell was implemented to follow photopolymerization reactions of UV powder systems under temperature control. The influence of additional acrylate monomers into UV powders was assessed and linked to the properties of the final coatings. An increase in concentration of reactive functions was found to lead to higher reactivity, even for relatively low working temperature. Glass transition temperature, crosslinking density and resistance towards scratch and solvent have been investigated and were found to be significantly improved, even for systems exhibiting a non negligible amount of unreacted groups after the curing step. These results highlight the interest of such coatings for heat-sensitive substrates like wood based panels largely used in the furniture market.  相似文献   

17.
用环氧丙烯酸酯与聚氨酯丙烯酸酯共混聚合的方法制备出性能优良的UV固化光纤带涂料。讨论了齐聚物种类,齐聚物共混配比,不同官能度单体配比,齐聚物与单体的配比以及光引发剂及其含量对UV固化光纤带涂料的性能如剥离性、拉伸强度、延伸率和柔韧性的影响。  相似文献   

18.
Semi‐crystalline dendritic poly(ether‐amide)s were synthesized by modifying hydroxyl end‐groups of dendritic poly(ether‐amide) with aromatic urethane acrylate and octadetyl isocyanate. The ratio of these modifiers can adjust the final properties of products to fulfill the requirements of UV‐curable powder coatings. These UV‐curable semi‐crystalline dendritic poly(ether‐amide)s have a Tg in the range of 41–45°C and a Tm of around 120°C. Their thermal behavior and semi‐crystalline properties were studied by DSC and XRD. The photopolymerization kinetics was investigated by Photo‐DSC. The residual unsaturation, thermal stability, and hardness of the UV‐cured films were also studied. The obtained results show that these semi‐crystalline dentritic poly(ether‐amide)s may be used as prepolymers in UV‐curable powder coating systems. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 287–291, 2003  相似文献   

19.
Four different UV‐curable poly(urethane acrylate)s were prepared through the reaction of two diisocyanates [i.e., toluene‐2,4‐diisocyanate (TDI) and isophorone diisocyanate (IPDI)] and two polyols [i.e., polycaprolactone triol (PCLT) and polycaprolactone diol (PCLD)], and they were characterized with Fourier transform infrared spectroscopy. The mechanical properties, thermal properties, and water sorption of the cured poly(urethane acrylate)s were also investigated with respect to the chemical structures of the polyols and diisocyanates. In comparison with linear PCLD–TDI and PCLD–IPDI, crosslinked PCLT–TDI and PCLT–IPDI with trifunctional PCLT showed relatively high thermal decomposition temperatures. The hardness and modulus of the UV‐cured poly(urethane acrylate) films, which were measured by a nanoindentation technique, were in the following increasing order: PCLD–IPDI ~ PCLD–TDI < PCLT–IPDI ~ PCLT–TDI. The pencil hardness was 3H for PCLT–IPDI and PCLT–TDI and HB for PCLD–IPDI and PCLD–TDI. Two urethane acrylates prepared from the trifunctional polyol showed better acid and alkali resistances than those made from the bifunctional polyol. These mechanical properties and chemical resistances may have been strongly dependent on the chain flexibility of the molecules and crosslinking density. Regardless of the functionality in the polyol, the change in the yellowness index showed a lower value in the poly(urethane acrylate) coating containing the aliphatic diisocyanate IPDI in comparison with the corresponding poly(urethane acrylate) with the aromatic diisocyanate TDI. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Water‐soluble urethane acrylate ionomers containing dimethylolpropionic acid (DMPA) were synthesized, changing the molecular components, and their ultraviolet (UV) coating properties were studied. It was found that the UV coating properties of the urethane acrylate ionomer films were very dependent on the molecular weight of the soft segment, the type of the diisocyanate, and the amount of neutralization. In general observations, the cured films displayed much improved mechanical properties, compared with conventional urethane acrylate film not containing ionic groups. The main reason for the improved film properties seemed to be attributed to the presence of ionic groups in the network. In dynamic mechanical analysis, two distinct glass transition temperatures, corresponding to the ionic hard domains and soft domains, were detected at high content of ionic groups. This suggested that the urethane acrylate network be composed of two phases. Consequently, the ionic hard domains formed by the phase separation from crosslinked network could act as a reinforcing filler, which possibly explains the improved film properties of the urethane acrylate ionomer films. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1853–1860, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号