首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Core–shell polybutadiene‐graft‐polystyrene (PB‐g‐PS) rubber particles with different ratios of polybutadiene to polystyrene were prepared by emulsion polymerization through grafting styrene onto polybutadiene latex. The weight ratio of polybutadiene to polystyrene ranged from 50/50 to 90/10. These core‐shell rubber particles were then blended with polystyrene to prepare PS/PB‐g‐PS blends with a constant rubber content of 20 wt%. PB‐g‐PS particles with a lower PB/PS ratio (≤70/30) form a homogeneous dispersion in the polystyrene matrix, and the Izod notched impact strength of these blends is higher than that of commercial high‐impact polystyrene (HIPS). It is generally accepted that polystyrene can only be toughened effectively by 1–3 µm rubber particles through a toughening mechanism of multiple crazings. However, the experimental results show that polystyrene can actually be toughened by monodisperse sub‐micrometer rubber particles. Scanning electron micrographs of the fracture surface and stress‐whitening zone of blends with a PB/PS ratio of 70/30 in PB‐g‐PS copolymer reveal a novel toughening mechanism of modified polystyrene, which may be shear yielding of the matrix, promoted by cavitation. Subsequently, a compression‐induced activation method was explored to compare the PS/PB‐g‐PS blends with commercial HIPS, and the result show that the toughening mechanisms of the two samples are different. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Sub‐micrometer core‐shell polybutadiene‐graft‐polystyrene (PB‐g‐PS) copolymers with various ratios of polybutadiene (PB) core to polystyrene (PS) shell were synthesized by emulsion grafting polymerization with 1,2‐azobisisobutyronitrile (AIBN) as initiator. These graft copolymers were blended with PS to prepare PS/PB‐g‐PS with a rubber content of 20 wt%. The mechanical properties, morphologies of the core‐shell rubber particles and deformation mechanisms under various conditions were investigated. RESULTS: Infrared spectroscopic analysis confirmed that PS could be grafted onto the PB rubber particles. The experimental results showed that a specimen with a ‘cluster’ dispersion state of rubber particles in the PS matrix displayed better mechanical properties. Transmission electron micrographs suggested that crazing only occurred from rubber particles and extended in a bridge‐like manner to neighboring rubber particles parallel to the equatorial plane at a high speed for failure specimens, while the interaction between crazing and shear yielding stabilized the growing crazes at a low speed in tensile tests. CONCLUSION: AIBN can be used as an initiator in the graft polymerization of styrene onto PB. The dispersion of rubber particles in a ‘cluster’ state leads to better impact resistance. The deformation mechanism in impact tests was multi‐crazing, and crazing and shear yielding absorbed the energy in tensile experiments. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
It is well known that the dominant toughening mechanism of rubber‐modified polystyrene is multiple crazing. Some researchers have investigated polystyrene that can be modified by rubbers with dual particle sizes, leading to better mechanical properties. That is, the way to absorb energy during the deformation process is crazing and cavitation induced by rubber particles. Two types of polybutadiene‐graft‐polystyrene (PB‐g‐PS) rubber modifiers which have core‐shell structures were synthesized via an emulsion graft polymerization using redox and oil‐soluble initiators, respectively. To balance the yield strength, general‐purpose polystyrene was blended with the PB‐g‐PS modifiers, as well as commercial high‐impact polystyrene. Blends were defined as R‐bimodal and O‐bimodal corresponding to dispersed PB‐g‐PS particles formed using the redox and oil‐soluble initiators, respectively. The impact strength of R‐bimodal was improved significantly by altering the ratio of core to shell. However, little change of impact strength was observed for O‐bimodal. Transmission electron microscopy images of fracture surfaces indicated that the deformation mechanism of R‐bimodal is shear‐yielding induced by multi‐crazing. Moreover, PB‐g‐PS particles dispersed in O‐bimodal can form a ‘cluster’ structure, leading to crazing to absorb energy. Scanning electron microscopy images also showed obvious distinctness between the R‐bimodal and O‐bimodal systems due to different deformation mechanisms. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
A series of PB‐g‐SAN impact modifiers (polybutadiene particles grafted by styrene and acrylonitrile) are synthesized by seed emulsion copolymerization initiated by oil‐soluble initiator, azobisiobutyronitrile (AIBN). The ABS blends are obtained by mixing SAN resin with PB‐g‐SAN impact modifiers. The mechanical behavior and the phase morphology of ABS blends are investigated. The graft degree (GD) and grafting efficiency (GE) are investigated, and the high GD shows that AIBN has a fine initiating ability in emulsion grafting of PB‐g‐SAN impact modifiers. The morphology of the rubber particles is observed by the transmission electron microscopy (TEM). The TEM photograph shows that the PB‐g‐SAN impact modifier initiated by AIBN is more likely to form subinclusion inside the rubber particles. The dynamic mechanical analysis on ABS blends shows that the subinclusion inside the rubber phase strongly influences the Tg, maximum tan δ, and the storage modulus of the rubber phase. The mechanical test indicates that the ABS blends, which have the small and uniform subinclusions dispersed in the rubber particles, have the maximum impact strength. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

5.
Natural rubber (NR) latex was grafted by emulsion polymerization with styrene monomer, using cumene hydroperoxide/tetraethylene pentamene as redox initiator system. The polystyrene‐grafted NR (PS‐g‐NR) was hydrogenated by diimide reduction in the latex form using hydrazine and hydrogen peroxide with boric acid as a promoter. At the optimum condition for graft copolymerization, a grafting efficiency of 81.5% was obtained. In addition, the highest hydrogenation level of 47.2% was achieved using a hydrazine:hydrogen peroxide molar ratio of 1:1.1. Hydrogenation of the PS‐g‐NR (H(PS‐g‐NR)) increased the thermal stability. Transmission electron microscopy analysis of the H(PS‐g‐NR) particles revealed a nonhydrogenated rubber core and hydrogenated outer rubber layer, in accordance with the layer model. The addition of H(PS‐g‐NR) at 10 wt % as modifier in an acrylonitrile–butadiene–styrene (ABS) copolymer increased the tensile and impact strengths and the thermal resistance of the ABS blends, and to a greater extent than that provided by blending with NR or PS‐g‐NR. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
This work experimentally and theoretically investigates the use of bifunctional initiators in the synthesis of high-impact polystyrene (HIPS). The experimental design involved a series of nonisothermal bulk polymerizations of styrene (St) in the presence of polybutadiene (PB). The performance of three commercial initiators [2,5-dimethyl −2,5 bis(2-ethylhexanoyl peroxy] hexane or L–256; 2,5 bis(benzoyl peroxy) hexane or L–118; and ethyl 3,3 di(t-butyl peroxide) butirate or L–233] were compared to the performance of a standard monofunctional initiator (terbutylperoctoate or TPBO), and to the blank case (i.e., without initiator). From samples taken along the prepolymerization period, the phase inversion point and the 30% conversion point were estimated. For the final product, the free polystyrene (PS) molecular weights and the St grafting efficiency were measured. A mathematical model was developed that predicts the evolution of the MWDs for the free PS the residual PB, and the graft copolymer, together with the chemical composition distribution for the total graft copolymer. Compared to the monofunctional case, the L–256 initiator induces phase inversion and rubber grafting at low conversions. Also, it shortens the prepolymerization times by around 38%, without affecting the molecular characteristics of the final product. L–118 also shortens prepolymerization time with respect to TBPO; but is not as effective as L–256 or TBPO in promoting rubber grafting. At the polymerization end, the final molecular characteristics are practically independent of the initiator type because most of the polymerization in induced by monomer initiation. Due to its slow decomposition rate, the L–233 initiator is less effective that TBPO for reducing prepolymerization times and for promoting phase inversion. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Polypropylene/poly(methyl acrylate)‐grafted glass wool (PMA‐g‐GW) mixes were prepared. The polymerization process was carried out using potassium persulfate (PPS) and PPS/acetone sodium bisulfite (ASBS) as a redox‐pair initiation system at 60 and 70°C. The effect of using PPS or PPS/ASBS on the grafting percent and conversion percent reveals that the conversion percent values on using PPS as an initiator are higher than those of PPS/ASBS, while in the case of grafting, the inverse is true, that is, using PPS as an initiator gives grafting percent values lower than those that can be obtained using PPS/ASBS. The dielectric properties, thermal diffusivity, specific heat capacity, and thermal conductivity of PP loaded with modified glass wool as a function of different types and concentrations of initiators—used in the grafting polymerization process, namely, PPS and the redox initiating system—were also studied. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 723–732, 2003  相似文献   

8.
Natural rubber grafted polystyrene (NR‐g‐PS) and natural rubber grafted polystyrene‐co‐methyl methacrylate (NR‐g‐P(S‐co‐MMA)) were prepared by emulsion polymerization technique using tert‐BuHP‐TEPA as a redox initiator to improve the thermal and mechanical stability of NR. Additional peaks appear in the Fourier‐transform infrared spectra at 695 and 1,732 cm?1 confirms the formation of graft polymerization. The existence of functional groups on the grafted NR was also clearly confirmed from the morphology obtained from transmission electron microscopy analysis. The effect of curing on the mechanical and thermal properties of grafted NR has also been studied. Glutaraldehyde was used as the curing agent for the grafted and ungrafted NRs throughout the entire course of investigation. It was found that curing of grafted NR samples enhanced tensile strength, modulus, hardness, and thermal stability. Grafted NR showed the tensile strength values of 12 and 17 MPa for NR‐g‐PS and NR‐g‐P(S‐co‐MMA), respectively. Enhancement in thermal stability of NR was confirmend from the activation energy of degradation calculated based on thermogravimetric analyzer. The value of activation energy for NR (135.13 kJ/mol) was found to be increased to 147.89 kJ/mol (NR‐g‐PS) and 151.6 kJ/mol (NR‐g‐P(S‐co‐MMA)). The overall properties of NR have been strongly affected by the interaction and chain bundling between functional groups present in the grafted copolymer and the unsaturated chains in its structure. J. VINYL ADDIT. TECHNOL., 25:339–346, 2019. © 2019 Society of Plastics Engineers  相似文献   

9.
Starch nanocrystals‐g‐polystyrene (StN‐g‐PS) was synthesized by free radical emulsion copolymerization of starch nanocrystals with styrene. The effect of polymerization conditions on grafting efficiency (GE) and grafting ratio (GR) were investigated. It was found that during graft copolymerization procedure both GE and GR increase with increasing monomer concentration and reaction time. As a result the high GE and high GR can be achieved. The good linear fit of the GR with ASt/AOH (the absorption strength ratio of aromatic ring peaks and hydroxyl group peaks) confirmed that during graft copolymerization, FTIR spectra can be used as a simple method for determining GR. X‐ray diffraction showed that the crystallinity of StN‐g‐PS decreased slightly with increasing GR. Grafted polystyrene side chains can improve the interface compatibility of starch nanocrystals with the hydrophobic polymer matrix. The mechanical properties of StN‐g‐PS/rubber nanocomposites can be obviously enhanced. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40571.  相似文献   

10.
High‐impact polystyrene (HIPS) is a kind of thermoplastic with good impact, which is considered to derive from the biphase of microstructure studied with SEM, etc. In this article, the influence of polystyrene (PS)/polybutadiene (PB) graft structure to the behavior of HIPS was studied through molecular simulation. The analysis of Flory‐Huggis parameter χ and radial distribution function (RDF) shows that the blend system of PS/PB has the best miscibility when the mass ratio of PS/PB is 60/40. In the toughening process, however, the graft copolymer PB‐g‐S is formed. For the PS/PB‐g‐S system with the same repeat unit of PS, PB‐g‐S chains with two grafts [PB‐g‐S(G = 2)] are better than PB‐g‐S chains with one graft [PB‐g‐S(G = 1)] in miscibility, which is in accord with the study of Fischer and Hellmann. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
Natural rubber/polystyrene (NR/PS) blend films with weight ratios of 70/30, 60/40, and 50/50 were prepared using polystyrene grafted natural rubber copolymers (NR‐g‐PS) as the compatibilizer. Copolymers with molar ratios of 90/10, 80/20, and 70/30 were synthesized via emulsion copolymerization using tert‐butyl hydroperoxide/tetraethylene pentamine as an initiator. The copolymers were subsequently added into the blends at 0, 5, 10, 15, 20, 25, and 30 phr. The mixtures were cast into films by the solution‐casting method using toluene as the casting solvent. Mechanical and morphological properties of the prepared films were investigated. The film prepared from 80/20 NR‐g‐PS showed higher tensile and tear strength, as well as finer domain size of the dispersed phase, than those prepared from 90/10 and 70/30 NR‐g‐PS. However, the mechanical properties of the films were decreased at high loading of the copolymers. In addition, themogravimetric analysis revealed that weight loss was decreased upon introduction of the compatibilizer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 826–831, 2005  相似文献   

12.
This work aimed at studying the role of poly(phenylene oxide) (PPO) and polystyrene (PS) in toughening polyamide‐6 (PA6)/styrene‐ethylene‐butadiene‐styrene block copolymer grafted with maleic anhydride (SEBS‐g‐MA) blends. The effects of weight ratio and content of PPO/PS on the morphology and mechanical behaviors of PA6/SEBS‐g‐MA/(PPO/PS) blends were studied by scanning electron microscope and mechanical tests. Driving by the interfacial tension and the spreading coefficient, the “core–shell” particles formed by PPO/PS (core) and SEBS‐g‐MA (shell) played the key role in toughening the PA6 blends. As PS improved the distribution of the “core–shell” particles due to its low viscosity, and PPO guaranteed the entanglement density of the PPO/PS phase, the 3/1 weight ratio of PPO/PS supplied the blends optimal mechanical properties. Within certain range, the increased content of PPO/PS could supply more efficient toughening particles and bring better mechanical properties. Thus, by adjusting the weight ratio and content of PPO and PS, the PA6/SEBS‐g‐MA/(PPO/PS) blends with excellent impact strength, high tensile strength, and good heat deflection temperature were obtained. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45281.  相似文献   

13.
A novel method of grafting styrene onto linear low‐density polyethylene (LLDPE) by suspension polymerization was systematically evaluated. Cyclohexane as a compatibilizer was introduced to swell and activate the surface of LLDPE molecular chain for amplifying the contact point of styrene monomer with LLDPE. A series of copolymer of grafting polystyrene (PS) onto LLDPE, known as LLDPE‐g‐PS, were prepared with different ratios of cyclohexane/styrene monomer and various LLDPE dosages. FTIR and 1H NMR techniques both confirmed successful PS grafting onto the LLDPE chains. In addition, SEM images of LLDPE‐g‐PS particles showed that the cross‐section morphology becomes smooth and dense with suitable cyclohexane dosages, indicating a better compatibility between LLDPE and PS. The highest grafting efficiency was 28.4% at 10 mL/g cyclohexane and styrene monomer when 8% LLDPE was added. In these conditions, the LLDPE‐g‐PS elongation at break increased by about 30 times compared with PS. Moreover, thermal gravimetric analysis (TGA) demonstrated that LLDPE‐g‐PS possesses much higher thermal stability than pure PS. Therefore, the optimal amount of cyclohexane as compatibilizer could increase the grafting efficiency and improve the toughness of PS. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41671.  相似文献   

14.
The N‐substituted polyaniline (PANi) was synthesized by incorporation of bromine‐terminated polystyrene (PS‐Br) onto the emeraldine form of polyaniline. End brominated polystyrene was synthesized by atom transfer radical polymerization (ATRP) technique and then deprotonated polyaniline was reacted with PS‐Br to prepare PS‐grafted PANi (PS‐g‐PANi) copolymer through N‐grafting reaction. The degree of N‐grafting can be controlled by adjusting the molar feed ratio of PS‐Br to the number of repeat units of PANi. The microstructure and compositions of the PS‐g‐PANi copolymers with different degrees of N‐substitution were characterized by FT‐IR, elemental analysis, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The cyclicvoltammetry shows that the electroactivity of N‐substituted PANi is strongly dependent on the degree of N‐grafting. The solubility of PS‐g‐PANi copolymers in common organic solvents such as tetrahydrofuran and chloroform was improved by increasing the degree of N‐grafting, and also the samples are partially soluble in xylene. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
A polystyrene (PS)/rubber blend compatibilized with PS‐g‐rubber copolymer, prepared via emulsion polymerization using redox initiator system, is used to investigate the utilization of central composite design (CCD) and artificial neural network (ANN) approaches in correlating polymerization conditions to mechanical properties (tensile strength and abrasion loss) of unfilled compound vulcanizates. The conditions were manipulated by changing four factors: reaction temperature and time, percentage of deproteinized rubber in the mixture containing natural rubber, and amount of chain transfer agent. The results show that the relationships between the conditions and the mechanical properties for compatibilized PS/rubber blend are too complex to be explained by polynomials, but are well described by the ANN models, developed for each response. In addition, simulation results for the tensile strength response as a function of those factors using the obtained ANN are in agreement with literature, whereas those results for the abrasion loss do not quite agree with literature due to the interference of the large measurement error. This suggests that only experimental data with high precision should be used to train an ANN to achieve a model with not only best performance but also high reliability. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci. 2013  相似文献   

16.
A new copolymer of tris(2‐methoxyethoxy) vinylsilane (TMEVS)‐grafted ethylene–propylene–diene elastomer (EPDM‐g‐TMEVS) has been developed by grafting of TMEVS onto EPDM by using dicumylperoxide (DCP) initiator. The linear polystyrene blends (EPDM‐g‐TMEVS/PS) based on EPDM‐g‐TMEVS have been synthesized with varying weight percentages of polystyrene in a twin‐screw extruder. In a similar manner, the dynamically vulcanized and nanoclay‐reinforced polystyrene blends have also been developed using DCP and organically modified montmorillonite clay separately by means of a twin‐screw extruder. The grafting of TMEVS onto EPDM at allylic position present in the third monomer of EPDM has been confirmed by Fourier Transform infrared spectroscopy. The effect of silane‐grafted EPDM and concentration of nanoclay on mechanical properties of polystyrene blends has been studied as per ASTM standards. The morphological behavior of these blends has been investigated using scanning electron microscope. It was observed that the incorporation of silane‐grafted EPDM enhanced the impact strength and the percentage elongation of linear‐ and dynamically vulcanized blends. However, the values of tensile strength, flexural strength, flexural modulus, and hardness of the blends were found to be decreasing with the increase of silane‐grafted EPDM. In the case of nanoclay‐reinforced polystyrene blends, the values of impact strength, tensile strength, flexural strength, flexural modulus, and hardness were increased with an increase in the concentration of nanoclay. XRD studies have been carried out to confirm the formation of nanoclay‐reinforced EPDM‐g‐TMEVS/PS blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
With Lewis Acids as catalysts in melt system, the influence of kinds of Lewis Acids, dosages of catalysts on the behaviors of crosslinking and grafting of ethylene–propylene–diene rubber (EPDM) were investigated. The Lewis Acids, such as anhydrous AlCl3, FeCl3, SnCl4, could initiate the crosslinking of EPDM and the grafting between EPDM and polystyrene (PS). The carbon–carbon double bonds existing on EPDM chain were favorable to the formation of the initial carbocation in the presence of Lewis Acids. The carbocation initiated carbonium ion polymerization between the unsaturated bonds, or substituted for a proton from the phenyl in the presence of PS forming EPDM‐g‐PS copolymer. Anhydrous aluminum chloride was found to be an efficient catalyst and its initiating temperatures for crosslinking or grafting were about 110°C. The amounts of gel and the data of torques showed that there was a competition between the crosslinking‐grafting reaction and the degradation of blending components in the presence of AlCl3. The EPDM‐g‐PS copolymer served as a compatibilizer in the EPDM/PS blends and enhanced the mechanical properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
A series of acrylonitrile–butadiene–styrene (ABS) copolymers were prepared using lithium‐catalyzed low‐cis rubber (PB700A), nickel‐catalyzed high‐cis rubber (BR9004), and their compounded rubber (PB700A/BR9004 = 50:50) as toughening agents through bulk polymerization. The effects of molecular structures of rubbers on the dissolving and grafting process of them were investigated. The structure and properties of ABS resins were characterized with FTIR, TEM, and performance measurements. It is shown that the characteristics of rubbers affect their dissolving state and grafting reaction and consequently influence the morphology and properties of ABS materials. BR9004 promotes the formation of irregular microsized rubber particles with special “salami”‐like structure and, therefore, presents better mechanical properties. PB700A has much higher 1,2‐isomers, which benefits its dispersion and grafting reaction; its toughening effect, however, is unsatisfactory and can be improved by the incorporation of BR9004. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

19.
Poly1‐hexene was prepared using a conventional heterogeneous Ziegler–Natta catalyst and its stereoregularity was characterized using 13C‐NMR analysis. New kind of high impact polystyrene (HIPS) was prepared by radical polymerization of styrene in the presence of different amounts of synthesized poly1‐hexene (PH) as impact modifier (HIPS/PH) and compared with conventional high impact polystyrene with polybutadiene (HIPS/PB) as rubber phase. Scanning electron microscopy (SEM) revealed that the dispersion of poly1‐hexene in polystyrene matrix was more uniform compared with it in HIPS/PB. The impact strength of HIPS/PH was 29–79% and 80–289% higher than that in HIPS/PB and neat polystyrene, respectively. FTIR was used to confirm more durability of HIPS/PH samples toward ozonation. To study the effect of rubber type and amount on the Tgs of polystyrene, differential scanning calorimetry was employed. Results obtained from TGA demonstrated higher thermal stability of HIPS/PH sample in comparison with conventional HIPS/PB one. Our obtained results suggest new high impact polystyrene that in all studied aspects has better performance than the conventional HIPS. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43882.  相似文献   

20.
By using in situ prepolymerization and radiation curing, high‐impact polystyrene (HIPS) with a bimodal distribution of the size of the rubber particles (bimodal HIPS) was synthesized in the presence of ultrafine full‐vulcanized powdered styrene–butadiene rubber (UFPSBR) and polybutadiene rubber (BR). TEM photographs indicated that UFPSBR was dispersed uniformly as a single particle with a diameter of about 100 nm. On the other hand, bimodal HIPS with different rubber particle size distributions could also be obtained by blending HIPS and UFPSBR grafting styrene (UFPSBR‐g‐St) with different grafting yields. The bimodal HIPS with the smallest rubber particle size, at about 100 nm, could be prepared by blending the monomodal HIPS containing big rubber particles with polystyrene/UFPSBR. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号