共查询到20条相似文献,搜索用时 15 毫秒
1.
W.‐Y. Wong G.‐J. Zhou X.‐M. Yu H.‐S. Kwok B.‐Z. Tang 《Advanced functional materials》2006,16(6):838-846
Two new phosphorescent iridium(III ) cyclometalated complexes, [Ir(DPA‐Flpy)3] ( 1 ) and [Ir(DPA‐Flpy)2(acac)] ( 2 ) ((DPA‐Flpy)H = (9,9‐diethyl‐7‐pyridinylfluoren‐2‐yl)diphenylamine, Hacac = acetylacetone), have been synthesized and characterized. The incorporation of electron‐donating diphenylamino groups to the fluorene skeleton is found to increase the highest occupied molecular orbital (HOMO) levels and add hole‐transporting ability to the phosphorescent center. Both complexes are highly amorphous and morphologically stable solids and undergo glass transitions at 160 and 153 °C, respectively. These iridium phosphors emit bright yellow to orange light at room temperature with relatively short lifetimes (< 1 μs) in both solution and the solid state. Organic light‐emitting diodes (OLEDs) fabricated using 1 and 2 as phosphorescent dopant emitters constructed with a multilayer configuration show very high efficiencies. The homoleptic iridium complex 1 is shown to be a more efficient electrophosphor than the heteroleptic congener 2 . Efficient electrophosphorescence with a maximum external quantum efficiency close to 10 % ph/el (photons per electron), corresponding to a luminance efficiency of ~ 30 cd A–1 and a power efficiency of ~ 21 lm W–1, is obtained by using 5 wt.‐% 1 as the guest dopant. 相似文献
2.
The synthesis and characterization of two new phosphorescent cationic iridium(III) cyclometalated diimine complexes with formula [Ir( L )2(N‐N)]+(PF6–) ( HL = (9,9‐diethyl‐7‐pyridinylfluoren‐2‐yl)diphenylamine); N‐N = 4,4′‐dimethyl‐2,2′‐bipyridine ( 1 ), 4,7‐dimethyl‐1,10‐phenanthroline ( 2 )) are reported. Both complexes are coordinated by cyclometalated ligands consisting of hole‐transporting diphenylamino (DPA)‐ and fluorene‐based 2‐phenylpyridine moieties. Structural information on these heteroleptic complexes has been obtained by using an X‐ray diffraction study of complex 2 . Complexes 1 and 2 are morphologically and thermally stable ionic solids and are good yellow phosphors at room temperature with relatively short lifetimes in both solution and solid phases. These robust iridium complexes can be thermally vacuum‐sublimed and used as phosphorescent dyes for the fabrication of high‐efficiency organic light‐emitting diodes (OLEDs). These devices doped with 5 wt % 1 can produce efficient electrophosphorescence with a maximum brightness of up to 15 610 cd m–2 and a peak external quantum efficiency of ca. 7 % photons per electron that corresponds to a luminance efficiency of ca. 20 cd A–1 and a power efficiency of ca. 19 lm W–1. These results show that charged iridium(III) materials are useful alternative electrophosphors for use in evaporated devices in order to realize highly efficient doped OLEDs. 相似文献
3.
J. Ding J. Gao Y. Cheng Z. Xie L. Wang D. Ma X. Jing F. Wang 《Advanced functional materials》2006,16(4):575-581
Green‐emitting iridium dendrimers with rigid hole‐transporting carbazole dendrons are designed, synthesized, and investigated. With second‐generation dendrons, the photoluminescence quantum yield of the dendrimers is up to 87 % in solution and 45 % in a film. High‐quality films of the dendrimers are fabricated by spin‐coating, producing highly efficient, non‐doped electrophosphorescent organic light‐emitting diodes (OLEDs). With a device structure of indium tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonic acid)/neat dendrimer/1,3,5‐tris(2‐N‐phenylbenzimidazolyl)benzene/LiF/Al, a maximum external quantum efficiency (EQE) of 10.3 % and a maximum luminous efficiency of 34.7 cd A–1 are realized. By doping the dendrimers into a carbazole‐based host, the maximum EQE can be further increased to 16.6 %. The integration of rigid hole‐transporting dendrons and phosphorescent complexes provides a new route to design highly efficient solution‐processable dendrimers for OLED applications. 相似文献
4.
X. Wei J. Peng J. Cheng M. Xie Z. Lu C. Li Y. Cao 《Advanced functional materials》2007,17(16):3319-3325
The synthesis and photophysical study of two novel tert‐butyl modified cyclometalated iridium(III) complexes, i.e., bis(4‐tert‐butyl‐2‐phenylbenzothiozolato‐N,C2′) iridium(III)(acetylacetonate) [(tbt)2Ir(acac)] and bis(4‐tert‐butyl‐1‐phenyl‐1H‐benzimidazolato‐N,C2′) iridium(III)(acetylacetonate) [(tpbi)2Ir(acac)], are reported, their molecular structures were characterized by 13C NMR, 1H NMR, ESI‐MS, FT‐IR, and elementary analysis. Compared with their prototypes without tert‐butyl substituents [(bt)2Ir(acac) and (pbi)2Ir(acac)], (tbt)2Ir(acac) and (tpbi)2Ir(acac) both have shortened phosphorescent lifetimes[(tbt)2Ir(acac) versus (bt)2Ir(acac), 1.1 μs:1.8 μs; (pbi)2Ir(acac) versus (tpbi)2Ir(acac), 0.8 μs:1.82 μs]. Moreover, (tbt)2Ir(acac) has much more improved phototoluminescence quantum efficiencies in CH2Cl2 solution, [(tbt)2Ir(acac), 0.51; (bt)2Ir(acac), 0.26]. Employing them as dopants, high performance double‐layer PLEDs were fabricated. The (tbt)2Ir(acac)‐based and (tpbi)2Ir(acac)‐based PLEDs have the maximum external quantum efficiencies of 8.71 % and 10.25 %, respectively, and high EL quantum efficiencies of 5.92 % and 7.21 % can be achieved under high driven current density of 100 mA cm–2. PLEDs fabricated with both the two phosphors have much broadened EL spectra with FWHM of > 110 nm, which afford the feasibility to be used as dopants in white LEDs, and the best doping concentrations of the two complexes in fabrication of PLEDs were optimized. 相似文献
5.
B. Ma P.I. Djurovich S. Garon B. Alleyne M.E. Thompson 《Advanced functional materials》2006,16(18):2438-2446
Efficient blue‐, green‐, and red‐light‐emitting organic diodes are fabricated using binuclear platinum complexes as phosphorescent dopants. The series of complexes used here have pyrazolate bridging ligands and the general formula C∧NPt(μ‐pz)2PtC∧N (where C∧N = 2‐(4′,6′‐difluorophenyl)pyridinato‐N,C2′, pz = pyrazole ( 1 ), 3‐methyl‐5‐tert‐butylpyrazole ( 2 ), and 3,5‐bis(tert‐butyl)pyrazole ( 3 )). The Pt–Pt distance in the complexes, which decreases in the order 1 > 2 > 3 , solely determines the electroluminescence color of the organic light‐emitting diodes (OLEDs). Blue OLEDs fabricated using 8 % 1 doped into a 3,5‐bis(N‐carbazolyl)benzene (mCP) host have a quantum efficiency of 4.3 % at 120 Cd m–2, a brightness of 3900 Cd m–2 at 12 V, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.11, 0.24). Green and red OLEDs fabricated with 2 and 3 , respectively, also give high quantum efficiencies (~ 6.7 %), with CIE coordinates of (0.31, 0.63) and (0.59, 0.46), respectively. The current‐density–voltage characteristics of devices made using dopants 2 and 3 indicate that hole trapping is enhanced by short Pt–Pt distances (< 3.1 Å). Blue electrophosphorescence is achieved by taking advantage of the binuclear molecular geometry in order to suppress dopant intermolecular interactions. No evidence of low‐energy emission from aggregate states is observed in OLEDs made with 50 % 1 doped into mCP. OLEDs made using 100 % 1 as an emissive layer display red luminescence, which is believed to originate from distorted complexes with compressed Pt–Pt separations located in defect sites within the neat film. White OLEDs are fabricated using 1 and 3 in three different device architectures, either with one or two dopants in dual emissive layers or both dopants in a single emissive layer. All the white OLEDs have high quantum efficiency (~ 5 %) and brightness (~ 600 Cd m–2 at 10 V). 相似文献
6.
Y.‐H. Song S.‐J. Yeh C.‐T. Chen Y. Chi C.‐S. Liu J.‐K. Yu Y.‐H. Hu P.‐T. Chou S.‐M. Peng G.‐H. Lee 《Advanced functional materials》2004,14(12):1221-1226
Ir(III) metal complexes with formula [(nazo)2Ir(Fppz)] ( 1 ), [(nazo)2Ir(Bppz)] ( 2 ), and [(nazo)2Ir(Fptz)] ( 3 ) [(nazo)H = 4‐phenyl quinazoline, (Fppz)H = 3‐trifluoromethyl‐5‐(2‐pyridyl) pyrazole, (Bppz)H = 3‐t‐butyl‐5‐(2‐pyridyl) pyrazole, and (Fptz)H = 3‐trifluoromethyl‐5‐(2‐pyridyl) triazole] were synthesized, among which the exact configuration of 1 was confirmed using single‐crystal X‐ray diffraction analysis. These complexes exhibited bright red phosphorescence with relatively short lifetimes of 0.4–1.05 μs in both solution and the solid‐state at room temperature. Non‐doped organic light‐emitting diodes (OLEDs) were fabricated using complexes 1 and 2 in the absence of a host matrix. Saturated red electroluminescence was observed at λmax = 626 nm (host‐emitter complex 1 ) and 652 nm (host‐emitter complex 2 ), which corresponds to coordinates (0.66,0.34) and (0.69,0.31), respectively, on the 1931 Commission Internationale de l'Eclairage (CIE) chromaticity diagram. The non‐doped devices employing complex 1 showed electroluminance as high as 5780 cd m–2, an external quantum efficiency of 5.5 % at 8 V, and a current density of 20 mA cm–2. The short phosphorescence lifetime of 1 in the solid state, coupled with its modest π–π stacking interactions, appear to be the determining factors for its unusual success as a non‐doped host‐emitter. 相似文献
7.
8.
M.‐F. Wu S.‐J. Yeh C.‐T. Chen H. Murayama T. Tsuboi W.‐S. Li I. Chao S.‐W. Liu J.‐K. Wang 《Advanced functional materials》2007,17(12):1887-1895
We report a systematic comparison study of 3,5‐di(N‐carbazolyl)tetraphenylsilane (SimCP) and N,N′‐dicarbazolyl‐3,5‐benzene (mCP), which are used as the host materials for phosphorescent blue dopants in organic light‐emitting diodes (OLEDs). On the basis of photoexcitation emission spectroscopy, thermal stability analysis, photoelectron analysis, charge transport measurements, and molecular dynamics (MD) simulations, we conclude that the non‐π‐conjugated meta‐substituted triphenylsilyl moiety of SimCP exerts a unique hindering effect on the molecular packing characteristics in the condensed phase. The chemical origin of the superior performance of SimCP over mCP is revealed, and is expected to be helpful for the molecular design of effective host materials for enhancing the performance of blue phosphorescent OLEDs. 相似文献
9.
S.‐C. Lo G.J. Richards J.P.J. Markham E.B. Namdas S. Sharma P.L. Burn I.D.W. Samuel 《Advanced functional materials》2005,15(9):1451-1458
We describe the preparation of a dendrimer that is solution‐processible and contains 2‐ethylhexyloxy surface groups, biphenyl‐based dendrons, and a fac‐tris[2‐(2,4‐difluorophenyl)pyridyl]iridium(III ) core. The homoleptic complex is highly luminescent and the color of emission is similar to the heteroleptic iridium(III ) complex, bis[2‐(2,4‐difluorophenyl)pyridyl]picolinate iridium(III ) (FIrpic). To avoid the change in emission color that would arise from attaching a conjugated dendron to the ligand, the conjugation between the dendron and the ligand is decoupled by separating them with an ethane linkage. Bilayer devices containing a light‐emitting layer comprised of a 30 wt.‐% blend of the dendrimer in 1,3‐bis(N‐carbazolyl)benzene (mCP) and a 1,3,5‐tris(2‐N‐phenylbenzimidazolyl)benzene electron‐transport layer have external quantum and power efficiencies, respectively, of 10.4 % and 11 lm W–1 at 100 cd m–2 and 6.4 V. These efficiencies are higher than those reported for more complex device structures prepared via evaporation that contain FIrpic blended with mCP as the emitting layer, showing the advantage of using a dendritic structure to control processing and intermolecular interactions. The external quantum efficiency of 10.4 % corresponds to the maximum achievable efficiency based on the photoluminescence quantum yield of the emissive film and the standard out‐coupling of light from the device. 相似文献
10.
A series of 1‐phenylisoquinoline derivatives encapsulated with peripheral arylamines as dendrons are synthesized by using the Ullmann reaction and palladium‐catalyzed aromatic carbon–carbon Suzuki‐coupling reactions. Red‐emitting dendritic iridium complexes (called G1‐1 , G1‐2 , and G2 ) are synthesized using the following derivatives: N,N‐diphenyl‐3′‐isoquinolin‐4‐biphenylaniline, N,N‐di(9,9‐dimethylfluorenyl‐3′‐isoquinolin‐4‐biphenylaniline, N,N‐di(4′‐di(2′‐(9′,9′‐dimethylfluorenyl)amine)biphenyl‐3′‐isoquinolin‐4‐biphenylaniline as the first ligands and 5‐methyl‐3‐(pyridin‐2′‐yl)‐1H‐1,2,4‐triazole as an ancillary ligand. The obtained dendrimers are soluble in common organic solvents, and uniform thin films can be spin‐coated from such solutions. Devices fabricated from dendritic iridium complexes G1‐2 and G2 with a small molecule host are fabricated by spin‐coating from chloroform solution in different device configurations. G1‐2 and G2 show similar device performances with maximum external quantum efficiencies (EQEs) of 12.8 % and 11.8 % (photons/electron) and luminous efficiency of 9.2 cd A–1 and 8.5 cd A–1 at 0.1 mA cm–2, respectively. Devices based on polymer host poly(9,9‐dioctylfluorene)(PFO) (30 % PBD (2‐(4‐biphenyl)‐5‐(4‐tert‐butylphenyl‐1,3,4‐oxadiazole)) show a slightly higher efficiency for G1‐2 , with a maximum EQE of 13.9 % at a much higher current density of 6.4 mA cm–2 and luminance of 601 cd m–2. 相似文献
11.
M. Cocchi D. Virgili V. Fattori D. L. Rochester J. A. G. Williams 《Advanced functional materials》2007,17(2):285-289
A series of terdentate cyclometallated PtII complexes with remarkable luminescence properties are used as new phosphorescence‐emitting dopants in a blended host matrix as the emitting layer, resulting in very high electroluminescence efficiencies. Because of the high phosphorescence quantum yields of these Pt complexes and the efficient energy transfer from both singlet and triplet excited states of the host to the emitting guest, external electroluminescence quantum efficiencies as high as 4–16 % photons per carrier and luminous efficiencies of 15–40 cd A–1 are achieved. Moreover, these high efficiency values were maintained over a four‐decade current intensity span with no significant roll‐off. Tuning of the electroluminescence spectra from the yellow to the green‐bluish region of the chromaticity diagram is obtained simply by changing the substituents at the central 5‐position of the cyclometallating ligand. 相似文献
12.
Y.‐H. Kim H.‐C. Jeong S.‐H. Kim K. Yang S.‐K. Kwon 《Advanced functional materials》2005,15(11):1799-1805
Novel blue‐light‐emitting materials, 9,10‐bis(1,2‐diphenyl styryl)anthracene (BDSA) and 9,10‐bis(4′‐triphenylsilylphenyl)anthracene (BTSA), which are composed of an anthracene molecule as the main unit and a rigid and bulky 1,2‐diphenylstyryl or triphenylsilylphenyl side unit, have been designed and synthesized. Theoretical calculations on the three‐dimensional structures of BDSA and BTSA show that they have a non‐coplanar structure and inhibited intermolecular interactions, resulting in a high luminescence efficiency and good color purity. By incorporating these new, non‐doped, blue‐light‐emitting materials into a multilayer device structure, it is possible to achieve luminance efficiencies of 1.43 lm W–1 (3.0 cd A–1 at 6.6 V) for BDSA and 0.61 lm W–1 (1.3 cd A–1 at 6.7 V) for BTSA at 10 mA cm–2. The electroluminescence spectrum of the indium tin oxide (ITO)/copper phthalocyanine (CuPc)/1,4‐bis[(1‐naphthylphenyl)‐amino]biphenyl (α‐NPD)/BDSA/tris(9‐hydroxyquinolinato)aluminum (Alq3)/LiF/Al device shows a narrow emission band with a full width at half maximum (FWHM) of 55 nm and a λmax = 453 nm. The FWHM of the ITO/CuPc/α‐NPD/BTSA/Alq3/LiF/Al device is 53 nm, with a λmax = 436 nm. Regarding color, the devices showed highly pure blue emission ((x,y) = (0.15,0.09) for BTSA, (x,y) = (0.14,0.10) for BDSA) at 10 mA cm–2 in Commission Internationale de l'Eclairage (CIE) chromaticity coordinates. 相似文献
13.
C. J. Tonzola A. P. Kulkarni A. P. Gifford W. Kaminsky S. A. Jenekhe 《Advanced functional materials》2007,17(6):863-874
The synthesis, photophysics, cyclic voltammetry, and highly efficient blue electroluminescence of a series of four new n‐type conjugated oligomers, 6,6′‐bis(2,4‐diphenylquinoline) (B1PPQ), 6,6′‐bis(2‐(4‐tert‐butylphenyl)‐4‐phenylquinoline) (BtBPQ), 6,6′‐bis(2‐p‐biphenyl)‐4‐phenylquinoline) (B2PPQ), and 6,6′‐bis((3,5‐diphenylbenzene)‐4‐phenylquinoline) (BDBPQ) is reported. The oligoquinolines have high glass‐transition temperatures (Tg ≥ 133 °C), reversible electrochemical reduction, and high electron affinities (2.68–2.81 eV). They emit blue photoluminescence with 0.73–0.94 quantum yields and 1.06–1.42 ns lifetimes in chloroform solutions. High‐performance organic light‐emitting diodes (OLEDs) with excellent blue chromaticity coordinates are achieved from all the oligoquinolines. OLEDs based on B2PPQ as the blue emitter give the best performance with a high brightness (19 740 cd m–2 at 8.0 V), high efficiency (7.12 cd A–1 and 6.56 % external quantum efficiency at 1175 cd m–2), and excellent blue color purity as judged by the Commission Internationale de L'Eclairage (CIE) coordinates (x = 0.15,y = 0.16). These results represent the best efficiency of blue OLEDs from neat fluorescent organic emitters reported to date. These results demonstrate the potential of oligoquinolines as emitters and electron‐transport materials for developing high‐performance blue OLEDs. 相似文献
14.
Biwu Ma Bumjoon J. Kim Daniel A. Poulsen Stefan J. Pastine Jean M. J. Frchet 《Advanced functional materials》2009,19(7):1024-1031
Here, a new series of crosslinkable heteroleptic iridium (III) complexes for use in solution processed phosphorescent organic light emitting diodes (OLEDs) is reported. These iridium compounds have the general formula of (PPZ‐VB)2Ir(CˆN), where PPZ‐VB is phenylpyrazole (PPZ) vinyl benzyl (VB) ether; and the CˆN ligands represent a family of four different cyclometallating ligands including 1‐phenylpyrazolyl (PPZ) (1), 2‐(4,6‐difluorophenyl)pyridyl (DFPPY) (2), 2‐(p‐tolyl)pyridyl (TPY) (3), and 2‐phenylquinolyl (PQ) (4). With the incorporation of two crosslinkable VB ether groups, these compounds can be fully crosslinked after heating at 180 °C for 30 min. The crosslinked films exhibit excellent solvent resistance and film smoothness which enables fabrication of high‐performance multilayer OLEDs by sequential solution processing of multiple layers. Furthermore, the photophysical properties of these compounds can be easily controlled by simply changing the cyclometallating CˆN ligand in order to tune the triplet energy within the range of 3.0–2.2 eV. This diversity makes these materials not only suitable for use in hole transporting and electron blocking but also as emissive layers of several colors. Therefore, these compounds are applied as effective materials for all‐solution processed OLEDs with (PPZ‐VB)2IrPPZ (1) acting as hole transporting and electron blocking layer and host material, as well as three other compounds, (PPZ‐VB)2IrDFPPY ( 2 ), (PPZ‐VB)2IrTPY(3), and (PPZ‐VB)2IrPQ( 4 ), used as crosslinkable phosphorescent emitters. 相似文献
15.
Junqiao Ding Jianhong Lü Yanxiang Cheng Zhiyuan Xie Lixiang Wang Xiabin Jing Fosong Wang 《Advanced functional materials》2008,18(18):2754-2762
A series of novel red‐emitting iridium dendrimers functionalized with oligocarbazole host dendrons up to the third generation ( red‐G3 ) have been synthesized by a convergent method, and their photophysical, electrochemical, and electroluminescent properties have been investigated. In addition to controlling the intermolecular interactions, oligocarbazole‐based dendrons could also participate in the electrochemical and charge‐transporting process. As a result, highly efficient electrophosphorescent devices can be fabricated by spin‐coating from chlorobenzene solution in different device configurations. The maximum external quantum efficiency (EQE) based on the non‐doped device configuration increases monotonically with increasing dendron generation. An EQE as high as 6.3% was obtained as for the third generation dendrimer red‐G3 , which is about 30 times higher than that of the prototype red‐G0 . Further optimization of the device configuration gave an EQE of 11.8% (13.0 cd A?1, 7.2 lm W?1) at 100 cd m?2 with CIE coordinates of (0.65, 0.35). The state‐of‐the‐art performance indicated the potential of these oligocarbazole‐based red iridium dendrimers as solution processible emissive materials for organic light‐emitting diode applications. 相似文献
16.
M. C. Gather A. Köhnen A. Falcou H. Becker K. Meerholz 《Advanced functional materials》2007,17(2):191-200
The first full‐color polymer organic light‐emitting diode (OLED) display is reported, fabricated by a direct photolithography process, that is, a process that allows direct structuring of the electroluminescent layer of the OLED by exposure to UV light. The required photosensitivity is introduced by attaching oxetane side groups to the backbone of red‐, green‐, and blue‐light‐emitting polymers. This allows for the use of photolithography to selectively crosslink thin films of these polymers. Hence the solution‐based process requires neither an additional etching step, as is the case for conventional photoresist lithography, nor does it rely on the use of prestructured substrates, which are required if ink‐jet printing is used to pixilate the emissive layer. The process allows for low‐cost display fabrication without sacrificing resolution: Structures with features in the range of 2 μm are obtained by patterning the emitting polymers via UV illumination through an ultrafine shadow mask. Compared to state‐of‐the‐art fluorescent OLEDs, the display prototype (pixel size 200 μm × 600 μm) presented here shows very good efficiency as well as good color saturation for all three colors. The application in solid‐state lighting is also possible: Pure white light [Commision Internationale de l'Éclairage (CIE) values of 0.33, 0.33 and color rendering index (CRI) of 76] is obtained at an efficiency of 5 cd A–1 by mixing the three colors in the appropriate ratio. For further enhancement of the device efficiency, an additional hole‐transport layer (HTL), which is also photo‐crosslinkable and therefore suitable to fabricate multilayer devices from solution, is embedded between the anode and the electroluminescent layer. 相似文献
17.
T.‐H. Kim H.K. Lee OO. Park B.D. Chin S.‐H. Lee J.K. Kim 《Advanced functional materials》2006,16(5):611-617
Efficient white‐light‐emitting diodes (WLEDs) have been developed using a polyfluorene‐type blue‐emitting conjugated polymer doped with green and red phosphorescent dyes. The emission spectrum of the conjugated polymer, which has a very high luminescent efficiency, shows a large spectral overlap with the absorbance of green and red iridium complexes. Also, efficient energy transfer from the conjugated polymer to the iridium complexes is observed. Poly(N‐vinyl carbazole) is used to improve the miscibility between conjugated polymer and iridium complexes because of their poor chemical compatibility and phase separation. A white emission spectrum is easily obtained by varying the contents of the three materials and controlling the phase morphology. Moreover, these WLEDs show a voltage‐independent electroluminescence owing to the threshold and driving voltage of the three materials being similar as a result of energy transfer. 相似文献
18.
M. Ikai F. Ishikawa N. Aratani A. Osuka S. Kawabata T. Kajioka H. Takeuchi H. Fujikawa Y. Taga 《Advanced functional materials》2006,16(4):515-519
An enhancement in the external quantum efficiency (QE) of red phosphorescent organic light‐emitting devices (OLEDs) by using facially encumbered and bulky meso‐aryl substituted PtII porphyrin complexes is demonstrated. The maximum external QEs of phosphorescent OLEDs doped with the facially non‐encumbered PtII porphyrin complex 1 [5,15‐bis[4‐(4,4‐dimethyl‐2,6‐dioxacyclohexyl)phenyl]‐2,8,12,18‐tetrahexyl‐3,7,13,17‐tetramethylporphyrin platinum(II )], the facially encumbered PtII porphyrin complex 2 [5,15‐bis(2,6‐dimethoxyphenyl)‐2,8,12,18‐tetrahexyl‐3,7,13,17‐tetramethylporphyrinato platinum(II )], the PtII porphyrin complex 3 that bears bulkier 3,5‐di‐tert‐butylphenyl substituents [5,15‐bis(3,5‐di‐t‐butylphenyl)‐2,8,12,18‐tetrahexyl‐3,7,13,17‐tetramethylporphyrin platinum(II )], and the “doubly‐decamethylene‐strapped” PtII porphyrin complex 4 were 1, 4.2, 7.3, and 8.2 %, respectively. The trend of increasing QE values in the order of 1 < 2 < 3 < 4 may be related to facial encumbrance and steric bulkiness of meso‐aryl substituted PtII porphyrin complexes. Especially, in the case of the PtII porphyrin 4 , it is considered that the “double straps” play an important role in restricting rotational freedom of the meso‐aryl substituents. The triplet excited‐state lifetimes for PtII porphyrins 1 – 4 in OLEDs at an injection current density of 0.55 mA cm–2 were 80, 103, 140, and 152 μs, respectively. We believe that the trend of increasing triplet lifetime in going from 1 to 4 is correlated with suppressing non‐radiative decay. 相似文献
19.
S. Kan X. Liu F. Shen J. Zhang Y. Ma G. Zhang Y. Wang J. Shen 《Advanced functional materials》2003,13(8):603-608
We demonstrate novel organic light‐emitting diode (LED) materials that contain a green phosphorescent dye (dmbpy)Re(CO)3Cl (dmbpy = 4,4′‐dimethyl‐2,2′‐bipyridine), and a red fluorescent dye 4‐dicyanomethylene‐6‐(p‐dimethylaminostyryl)‐2‐methyl‐4H‐pyran (DCM) as dopants and polyvinylcarbazole (PVK) as the host. The photoluminescence (PL) and electroluminescence (EL) properties of these complex materials were studied. The energy transfer efficiency from PVK host to DCM is increased by the (dmbpy)Re(CO)3Cl co‐dopant, which has an emission energy between that of PVK and DCM. The (dmbpy)Re(CO)3Cl, which emits a long‐lived phosphorescence, is used as an energy coupler, providing the possibility to harvest both singlet and triplet energy in the devices. The pure red emission from DCM was observed from PL and EL spectra of (dmbpy)Re(CO)3‐Cl(> 2.0 wt.‐%):DCM(> 0.5 wt. %) doped PVK films, demonstrating an efficient energy transfer from PVK and (dmbpy)Re(CO)3‐Cl to DCM. By optimizing the concentration of DCM and (dmbpy)Re(CO)3Cl in PVK, a maximum EL quantum efficiency of 0.42 cd A–1 at a current density of 9.5 mA cm–2 was obtained. The EL quantum efficiency of the doubly doped device is significantly enhanced in comparison with both a DCM‐only doped PVK device and a DCM‐doped PVK device with the green fluorescent dye Alq3 as co‐dopant. The improvement in the operating characteristics of the phosphorescent and fluorescent dye doubly doped device is attributed to efficient energy transfer in the system, in which both triplet and singlet excitons are used for resultant emission in the polymer device. 相似文献