首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
The manufacture of fuel cells that can operate directly on various hydrocarbon fuels, without the need for reforming, has the potential of greatly speeding the application of fuel cells for transportation and distributed‐power applications. This paper will briefly review the literature in this area and describe recent developments in solid‐oxide fuel cells (SOFCs) that demonstrate that direct‐oxidation fuel cells are possible with Cu‐based anodes. A new method for synthesizing thin‐electrolyte, anode‐supported cells is described that is based on tape casting with graphite pore formers (see Figure), followed by impregnation with aqueous solutions of Cu(NO3)2 and Ce(NO3)3. The performance of model SOFCs for direct conversion of n‐butane and methane is shown. Finally, future developments that are needed for this technology to be commercialized are discussed.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Microporous tricobalt tetraoxide, Co3O4, nanoparticles (NPs) clusters have been successfully fabricated using a simple but efficient controlled solution combustion route. Such a synthesis involves combustion reaction of cobalt nitrate with cetyl trimethylammonium bromide (CTAB). The combustion process has been analyzed by simultaneous thermal analysis. The resultant powders were characterized by means of X-ray diffraction technique (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and nitrogen adsorption at −196 °C. The morphology and specific surface area of the obtained Co3O4 nanoparticles clusters have proved to be strongly dependent on the fuel (F)/oxidizer (O) molar ratio and the calcination temperature. It was found that both the crystallite size and the lattice parameter nanocrystalline Co3O4 increase with increasing the F/O molar ratio as well as the calcination temperature. X-ray diffraction confirmed the formation of CoO phase together with spinel Co3O4 using F/O ratio of 1. The concentration of such phase increases with increasing the F/O ratio. Moreover, when the calcination is applied at 900–1000 °C traces of CoO was obtained together with Co3O4 as a major phase.  相似文献   

15.
16.
17.
    
In this work, the effect of two frequently used GdxCe1−xO2−x/2 electrolytes (x = 0.1 and x = 0.2) on the performance of fuel cells operated at intermediate temperature was studied. The microstructures of ceria electrolytes responsible for the performance were discussed. Electrochemical measurements of as-prepared cells showed that the cell with Gd0.2Ce0.8O1.9 electrolyte had a better performance than that of Gd0.1Ce0.9O1.95. It can be concluded that the increase of grain boundary conductivity of Gd0.2Ce0.8O1.9 electrolyte contributes to its better cell performance.  相似文献   

18.
固态氧化物电解池(SOECs)因较高的能量转化效率在电化学还原CO2, 实现“碳中和”社会方面备受关注。与非对称电池结构相比, 对称SOECs的空气极和燃料极是相同或相近的材料, 可以减少界面种类, 改善电极与电解质的热膨胀匹配性, 简化电池的制备工艺。本研究合成了钙钛矿氧化物LaxSr2-xFe1.5Ni0.1Mo0.4O6-δ (LxSFNM, x=0.1、0.2、0.3、0.4), 作为固体氧化物电解池的对称电极用于评估纯CO2的电化学还原性能。掺入La3+可以有效提高反应催化活性, 其中L0.3SFNM为电极的电解池表现出最高的电化学性能, 800 ℃下, 在空气中的极化电阻为0.07 Ω∙cm2, 在50% CO-50% CO2中的极化电阻为0.62 Ω∙cm2。单电池L0.3SFNM@LSGM|LSGM|L0.3SFNM@LSGM在800 ℃和1.5 V电压下的电解电流密度为1.17 A∙cm-2, 在初始的50 h CO2短期电解测试中表现出优异的稳定性, 是一种理想的对称电极材料。  相似文献   

19.
Dual-phase porous Ni-YSZ cermets were fabricated via the freeze casting of a ceramic/camphene slurry. After removing the frozen camphene via sublimation at room temperature, the green samples were sintered for 3 h in air at various temperatures, ranging from 1100 to 1350 °C, and then reduced in an Ar-5% H2 atmosphere at 700 °C for 3 h. The fabricated Ni-YSZ cermets showed 3-D pore channels formed by the replication of the entangled camphene dendrite network and small pores in the Ni-YSZ walls produced by partial sintering of the NiO-YSZ composite. Furthermore, the fabricated samples were found to possess reasonable electrical conductivities, thus rendering them suitable for use as the basic components of planar solid oxide fuel cells (SOFCs).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号