首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of lubricating‐oil additive zinc dialkyldithiophosphate (ZDDP) on the friction and wear properties of polymers and their composites sliding against GCr15 bearing steel were studied by using an MHK‐500 ring‐on‐block wear tester (Timken wear tester). Then the frictional surfaces of the friction pairs were examined by using electron probe microanalysis (EPMA). Experimental results show that the ZDDP contained in liquid paraffin has little effect on the friction coefficients of the polyimide (PI) or polyamide 66 (PA66) against GCr15 bearing steel friction pairs compared with that under the lubrication of liquid paraffin, but it slightly reduces the friction coefficients of polytetrafluoroethylene (PTFE) or its composites against GCr15 bearing steel friction pairs. Under lubrication of liquid paraffin containing 2 wt % ZDDP, the ZDDP film absorbed on the frictional surfaces of the PTFE composites–GCr15 bearing steel friction pairs exhibits obvious antiwear properties; it greatly reduces the wear of pure PTFE and the PTFE composites filled with Pb, PbO, and MoS2; and the wear of the PTFE composites can be reduced by one order of magnitude compared with that under lubrication of pure liquid paraffin. Meanwhile, the inorganic fillers Pb, PbO, and MoS2 contained in PTFE have little effect on the absorption of ZDDP to the frictional surfaces, so they have little effect on the friction coefficients of the PTFE composites–GCr15 bearing steel friction pairs under the lubrication of liquid paraffin containing 2 wt % ZDDP. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1240–1247, 2000  相似文献   

2.
以针状的硅灰石和鳞片石墨为填料,采用冷压—烧结工艺制备了不同填料含量的聚四氟乙烯(PTFE)复合材料,考察了复合材料的摩擦磨损性能,并利用扫描电子显微镜对磨痕和转移膜进行了分析。结果表明,单独填充硅灰石和石墨时,PTFE的磨损率都会随填料含量的增加而降低,硅灰石的作用要强于石墨;但硅灰石会使PTFE的摩擦因数明显增大,而石墨会使PTFE的摩擦因数降低;2种填料提升PTFE耐磨性的作用机理不同,硅灰石在摩擦过程中会在滑动界面区域上逐渐堆积,起到优先承担载荷的作用;而石墨在摩擦过程中会发生片层的滑移与剥离,有助于转移膜的形成;适量的硅灰石(含量为20 %,质量分数,下同)与石墨(含量为5 %或10 %)复合填充能产生协同效应,使PTFE的磨损率进一步降低,耐磨性比未填充的PTFE提高200倍。  相似文献   

3.
The wear rate and coefficient of friction for graphite flake (GF)‐filled polytetrafluoroethylene (PTFE) composites were evaluated on a pin‐on‐disk wear tester under dry conditions. Scanning electron microscopy showed significant reduction in the abrasive wear of the composites. The wear rates of 5 and 10 wt % GF composites were reduced by more than 22 and 245 times, respectively, at sliding speed of 1 m/s. With increasing sliding distance from 1 to 8 km, the wear rate of pure PTFE decreased by 1.4 times whereas that of composites, it decreased up to three times. The significant decreased in wear rate and coefficient of friction might be attributed to the formation of a thin and tenacious transfer film on the counter‐surface. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
汪怀远  朱艳吉  冯新  陆小华 《化工学报》2009,60(7):1812-1817
分别研究了不同含量钛酸钾晶须(PTW)、碳纤(CF)填充聚四氟乙烯(PTFE)复合材料在硫酸溶液中和干摩擦条件下摩擦学性能以及酸中的耐蚀性能,借助SEM等分析探讨了相关机理。结果表明,酸中纯PTFE耐磨性较干摩擦条件下提高了2个数量级,摩擦系数也只有干摩擦的15.3%。与CF/PTFE相比,PTW/PTFE复合材料在酸中显示更好的耐蚀和耐磨性能。PTW可以进一步提高PTFE酸中耐磨性能、降低摩擦系数。含15%(质量)PTW时复合材料具有最低的磨损率,此时比纯PTFE酸中耐磨性提高13.8倍,是相同含量CF/PTFE耐磨性的3.2倍。由于酸溶液的冷却和润滑作用,复合材料的摩擦系数与干条件相比明显降低。然而,酸溶液阻止了转移膜的形成。不管是干摩擦还是在酸性溶液中,当填料含量超过15%(质量)时,犁削和磨粒磨损是PTFE复合材料的主要磨损机理。  相似文献   

5.
Four kinds of polytetrafluoroethylene (PTFE)-based composites, such as pure PTFE, PTFE + 30(v)%Cu, PTFE + 30(v)%Cu2O, and PTFE + 30(v)%CuS composite, were prepared. Then the friction and wear properties of the PTFE composites filled with Cu, Cu2O, or CuS sliding against GCr15-bearing steel under both dry and liquid paraffin-lubricated conditions were studied by using an MHK-500 ring-block wear tester. Finally, the worn surfaces and the transfer films of these PTFE composites formed on the surface of GCr15-bearing steel were investigated by using a scanning electron microscope (SEM) and an optical microscope, respectively. Experimental results show that the antiwear properties of these PTFE composites can be greatly improved by filling Cu, Cu2O, or CuS to PTFE, and the wear of these PTFE composites can be decreased by two orders of magnitude compared to that of pure PTFE under dry friction conditions. Meanwhile, CuS increases the friction coefficient of the PTFE composite, but Cu and Cu2O reduce the friction coefficients of the PTFE composites. However, the friction and wear properties of Cu, Cu2O, or CuS-filled PTFE composites can be greatly improved by lubrication with liquid paraffin. The friction coefficients of these PTFE composites can be decreased by one order of magnitude compared to those under dry friction conditions, while the wear of these PTFE composites can be decreased by one to two orders of magnitude. The PTFE + 30(v)%Cu composite exhibits excellent friction and wear-reducing properties under higher loads in liquid paraffin-lubricated conditions, so the PTFE + 30(v)%Cu composite is much more suitable for application under oil-lubricated conditions in practice. Optical microscope investigation of transfer films shows that Cu, Cu2O, and CuS enhance the adhesion of the transfer films to the surface of GCr15-bearing steel, so they greatly reduce the wear of the PTFE composites. However, the transfer of the PTFE composites onto the surface of GCr15-bearing steel can be greatly reduced by lubrication with liquid paraffin, but the transfer still takes place. SEM examination of worn surfaces shows that the interaction between liquid paraffin and the PTFE composites, especially the absorption of liquid paraffin into the surface layers of the PTFE composites, creates some cracks on the worn surfaces of Cu2O or CuS-filled PTFE composites, the creation and development of the cracks reduces the load-carrying capacity of the PTFE composites; this leads to the deterioration of the friction and wear properties of the PTFE composites under higher loads in liquid paraffin lubrication. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1455–1464, 1998  相似文献   

6.
Polyimide (PI) coatings filled with PTFE and nano‐Si3N4 were prepared by a spraying technique and successive curing. Nano‐Si3N4 particles were modified by grafting 3‐aminopropyltriethoxysilane to improve their dispersion in the as‐prepared coatings. Friction and wear performances and wear mechanisms of the coatings were evaluated. The results show that the incorporations of PTFE and modified nano‐Si3N4 particles greatly improve the friction reduction and wear resistance of PI coating. The friction and wear performance of the composite coating is significantly affected by the filler mass fraction and sliding conditions. PI coating incorporated with 20 wt % PTFE and 5 wt % modified nano‐Si3N4 displays the best tribological properties. Its wear rate is more than one order of magnitude lower and its friction coefficient is over two times smaller than that of the unfilled PI coating. Differences in the friction and wear behaviors of the hybrid coatings as a function of filler or sliding condition are attributed to the filler dispersion, the characteristic of transfer film formed on the counterpart ball and the wear mechanism of the coating under different sliding conditions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40410.  相似文献   

7.
The objectives of this research article is to evaluate the mechanical and tribological properties of glass‐fiber‐reinforced epoxy (G–E) composites with and without graphite particulate filler. The laminates were fabricated by a dry hand layup technique. The mechanical properties, including tensile strength, tensile modulus, elongation at break, and surface hardness, were investigated in accordance with ASTM standards. From the experimental investigation, we found that the tensile strength and dimensional stability of the G–E composite increased with increasing graphite content. The effect of filler content (0–7.5 wt %) and sliding distance on the friction and wear behavior of the graphite‐filled G–E composite systems were studied. Also, conventional weighing, determination of the coefficient of friction, and examination of the worn surface morphological features by scanning electron microscopy (SEM) were done. A marginal increase in the coefficient of friction with sliding distance for the unfilled composites was noticed, but a slight reduction was noticed for the graphite‐filled composites. The 7.5% graphite‐filled G–E composite showed a lower friction coefficient for the sliding distances used. The wear loss of the composites decreased with increasing weight fraction of graphite filler and increased with increasing sliding distance. Failure mechanisms of the worn surfaces of the filled composites were established with SEM. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2472–2480, 2007  相似文献   

8.
Five kinds of polytetrafluoroethylene (PTFE)‐based composites, pure PTFE, PTFE + 30(v)% MoS2, PTFE + 30(v)% PbS, PTFE + 30(v)% CuS, and PTFE + 30(v)% graphite (GR) composites, were first prepared. Then the friction and wear properties of these PTFE composites, sliding against GCr15‐bearing steel under both dry and liquid paraffin‐lubricated conditions, were studied by using an MHK‐500 ring‐on‐block wear tester. Finally, the worn surfaces and the transfer films of the PTFE composites formed on the surface of GCr15 bearing steel were investigated by using a scanning electron microscope (SEM) and an optical microscope, respectively. Experimental results show that filling with MoS2, PbS, CuS, or graphite to PTFE can reduce the wear of the PTFE composites by two orders of magnitude compared to that of pure PTFE under dry friction conditions. However, the friction and wear‐reducing properties of these PTFE composites can be greatly improved by lubrication with liquid paraffin. Investigations of transfer films show that MoS2, PbS, CuS, and graphite promote the transfer of the PTFE composites onto the surface of GCr15‐bearing steel under dry friction conditions, but the transfer of the PTFE composites onto the surface of GCr15‐bearing steel can be greatly reduced by lubrication with liquid paraffin. SEM examinations of worn surfaces show that with lubrication of liquid paraffin, the creation and development of the cracks occurred on the worn surfaces of the PTFE composites under load, which reduces the load‐supporting capacity of the PTFE composites. This would lead to the deterioration of the friction and wear properties of the PTFE composites under higher loads (>600N). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 751–761, 1999  相似文献   

9.
Polytetrafluoroethylene (PTFE) composites filled with PTFE waste offer interesting combination of tribological properties and low cost. PTFE composites waste was mechanically cut and sieved into powders. PTFE composites filled with PTFE waste powders were prepared by compression molding. Friction and wear experiments were carried out in a reciprocating sliding tribotester at a reciprocating frequency of 1.0 Hz, a contact pressure of 5.5 MPa, and a relative humidity of (60 ± 5)%. PTFE materials slid against a 45 carbon steel track. Results showed that a PTFE composite (B) filled with 20 wt % PTFE waste exhibited a coefficient of steady‐state friction slightly higher than that of unfilled PTFE (A), while wear resistance over two orders of magnitude higher than that of unfilled PTFE (A). Another PTFE composite filled with PTFE waste and alumina nanoparticles exhibited the highest wear resistance among the three PTFE materials. This behavior originates from the effective reinforcement of PTFE waste as a filler. It was experimentally confirmed that the low cost recycling of PTFE waste without by‐products is feasible. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1035–1041, 2007  相似文献   

10.
分别研究了不同含量碳纤维(CF)、玻璃纤维(GF)填充聚四氟乙烯(PTFE)复合材料在硫酸溶液中和干摩擦条件下的摩擦学性能,同时考察了PTFE复合材料在酸中的腐蚀行为,探讨了相关机理。结果表明,在酸中GF能够提高PTFE的耐磨性,比CF在提高PTFE耐磨性方面具有更好的优势。就酸溶液中的耐磨性和耐腐蚀性而言,15 %(质量分数,下同)是填料的最佳含量,此时GF和CF填充的PTFE,耐磨性分别较纯PTFE提高了7.7和4.4倍;当填料的含量超过15 %时,复合材料的耐磨性和耐腐蚀性均下降,主要是由于此时犁削和磨粒磨损是PTFE复合材料的主要磨损机制。由于酸溶液的冷却和润滑作用,硫酸溶液中PTFE复合材料的摩擦因数大幅降低,但酸溶液抑制了对磨面上转移膜的形成。  相似文献   

11.
This is a comparative study between ultrahigh molecular weight polyethylene (UHMWPE) reinforced with micro‐ and nano‐hydroxyapatite (HA) under different filler content. The micro‐ and nano‐HA/UHMWPE composites were prepared by hot‐pressing method, and then compression strength, ball indentation hardness, creep resistance, friction, and wear properties were investigated. To explore mechanisms of these properties, differential scanning calorimetry, infrared spectrum, wettability, and scanning electron microscopy with energy dispersive spectrometry analysis were carried out on the samples. The results demonstrated that UHMWPE reinforced with micro‐ and nano‐HA would improve the ball indentation hardness, compression strength, creep resistance, wettability, and wear behavior. The mechanical properties for both micro‐ and nano‐HA/UHMWPE composites were comparable with pure UHMWPE. The mechanical properties of nano‐HA/UHMWPE composites are better compared with micro‐HA/UHMWPE composites and pure UHMWPE. The optimum filler quantity of micro‐ and nano‐HA/UHMWPE composites is found to be at 15 wt % and 10 wt %, separately. The micro‐ and nano‐HA/UHMWPE composites exhibit a low friction coefficient and good wear resistance at this content. The worn surface of HA/UHMWPE composites shows the wear mechanisms changed from furrow and scratch to surface rupture and delamination when the weight percent of micro‐ and nano‐HA exceed 15 wt % and 10 wt %. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42869.  相似文献   

12.
Two types of representative nanometer materials, i.e., fibroid nanometer attapulgite and approximate spherical ultrafine diamond, were selected as fillers of polytetrafluoroethylene (PTFE) to study the mechanism of the wear‐reducing actions of the fillers in PTFE composites. The friction and wear tests were performed on a block‐on‐ring wear tester under dry sliding conditions. Differential scanning calorimetry (DSC) was used to investigate material microstructure and to examine modes of failure. No significant change in coefficient of friction was found, but the wear rate of PTFE composites was orders of magnitude less than that of pure PTFE. DSC analysis revealed that nanometer attapulgite and ultrafine diamond played a heterogeneous nucleation role in PTFE matrix and consequently resulted in increasing the crystallinity of PTFE composites. Moreover, the PTFE composite with higher heat absorption capacity and crystallinity exhibited improved wear resistance. A propositional “sea‐frusta” frictional model explained the wear mechanism of filler action in reducing the wear of PTFE polymer, i.e., fillers in the PTFE matrix effectively reduced the size of frictional broken units for PTFE composites and restrained the flowability of the units, as well as supporting the applied load. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
The tribological, mechanical, and thermal properties of carbon series additions reinforced CF/PTFE composites at high speed were investigated. In this work, carbon fiber (CF) filled polytetrafluoroethylene (PTFE) composites, which have excellent tribological properties under normal sliding speed (1.4 m/s), were filled with some carbon materials [graphene (GE), carbon nanotubes (CNTs) and graphite (Gr)] respectively to investigate the tribological properties of CF/PTFE composites at high sliding speed (2.1 and 2.5 m/s). The results reveal that the carbon series additions can improve the friction and anti‐wear performances of CF/PTFE, and GE is the most effective filler. The wear rate of 0.8 wt % GE/CF/PTFE was decreased by 50 ? 55%, 55 ? 60%, 40 ? 45% at 1.4, 2.1, and 2.5 m/s compared with CF/PTFE. SEM study shows GE could be helpful to form smooth and continuous transfer film on the surface of counterparts. Meanwhile, GE can improve its tensile strength and elastic modulus obviously. Thin layer structure of GE could enhance the thermal conductivity, which can be helpful to dissipate heat of CF/PTFE composites wear surface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43236.  相似文献   

14.
Four kinds of polytetrafluoroethylene(PTFE)-based composites, such as pure PTFE, PTFE+30%(v)PbO, PTFE+30%(v)Pb3O4, and PTFE+30%(v)Cu2O composite, were prepared. The friction and wear properties of these metal oxides filled PTFE composites sliding against GCr15 bearing steel in both dry and lubricated conditions were studied by using an MHK-500 ring-block wear tester. Then the worn surfaces of these PTFE composites and the transfer films of these PTFE composites formed on the surface of GCr15 bearing steel were examined by using a Scanning Electron Microscope (SEM) and an Optical Microscope, respectively. Experimental results show that the friction and wear properties of these metal oxide-filled PTFE composites can be greatly improved by liquid paraffin lubrication, and the friction coefficients can be decreased by one order of magnitude. Meanwhile, the interactions between liquid paraffin and metal oxide-filled PTFE composites, especially the absorption of liquid paraffin into the surface layers of these PTFE composites, reduce the mechanical strength and the load-carrying capacity of these metal oxide-filled PTFE composites. This leads to the deterioration of the friction and wear properties of these PTFE composites. Investigations of the frictional surfaces show that Pb3O4, Cu2O, and PbO enhance the adhesion of the transfer films to the surface of GCr15-bearing steel, and thus promote the transfer of the PTFE composites onto the surface of GCr15-bearing steel. Therefore, they greatly reduce the wear of the PTFE composites. However, the transfer of these PTFE composites onto the counterfaces can be greatly reduced by lubrication with liquid paraffin. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 85–93, 1997  相似文献   

15.
Four kinds of polytetrafluoroethylene (PTFE)-based composites, such as pure PTFE, PTFE + 30(vol.)% carbon fiber, PTFE + 30(vol.)% glass fiber, and PTFE + 30(vol.)% K2Ti6O13 whisker composite, were prepared. The friction and wear properties of these fiber- and whisker-reinforced PTFE composites sliding against GCr15-bearing steel (SAE52100 steel) under both dry and liquid paraffin lubricated conditions were studied by using an MHK-500 ring-block wear tester (Timken wear tester). Then the worn surfaces of these PTFE composites and the transfer films formed on the surface of GCr15-bearing steel were investigated by using a Scanning Electron Microscope (SEM) and an Optical Microscope, respectively. Experimental results show that the friction and wear properties of the PTFE composites reinforced with carbon fiber, glass fiber, and a K2Ti6O13 whisker can be greatly improved by lubrication with liquid paraffin, and the friction coefficients of these PTFE composites can be decreased by one order of magnitude compared to those under dry friction conditions. Meanwhile, the wear of the fiber- and whisker-reinforced PTFE composites in liquid paraffin lubrication increases with the increase of load, but the friction coefficients of these PTFE composites first decrease with the increase of load, and then increase with the increase of load. The variations of friction coefficients with load for these PTFE composites in liquid paraffin lubrication can be described properly by the Stribeck's curve as given in this article. However, when the load increases to the load limits of the PTFE composites, their friction and wear increase sharply. SEM and optical microscope investigations show that the interactions between liquid paraffin and the PTFE composites, especially the absorption of liquid paraffin into the surface layers of the PTFE composites, create some obvious cracks on the worn surfaces of the PTFE composites. The creation and the development of the cracks reduce the load-carrying capacity of the PTFE composites, and therefore lead to the increase of the friction and wear of the PTFE composites under higher loads. Meanwhile, the transfer of the fiber- and whisker-reinforced PTFE composites onto the counterfaces can be greatly reduced by lubrication with liquid paraffin, but the transfer still takes place. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1393–1402, 1998  相似文献   

16.
Micrometer and nanometer TiO2 particle‐filled poly(phthalazine ether sulfone ketone) (PPESK) composites with various filler volume fractions from 0.5 to 7.5 vol % were prepared by heating compression molding. The friction and wear behaviors of the PPESK composites were evaluated using the block‐on‐ring test rig by sliding PPESK‐based composite blocks against a mild carbon steel ring under dry friction conditions. The wear debris and the worn surfaces of the PPESK composites filled with micrometer and nanometer TiO2 particles were investigated by using a scanning electron microscope (SEM), while the structures of PPESK composites and wear debris were analyzed with IR spectra. Experimental results show that antiwear properties of the PPESK composites can be improved greatly by filling nanometer TiO2 particles, and the friction coefficient decreases when the filler volume fraction is below 2.5%, but when the filler volume fraction is above 2.5% the friction coefficient increases gradually with increasing filler volume fraction. In the case of micrometer TiO2 filler, wear rates increase with increasing filler volume fractions under identical test conditions, and the friction coefficients are less sensitive to the filler volume fraction. It was also found that the wear mechanism of micrometer TiO2 particle‐filled PPESK is mainly severe adhesion and abrasive wear, while that of nanometer TiO2 particle‐filled PPESK is mainly slight abrasive wear. In the former case, there are no transfer film formed on the surface of the counterpart steel, and wear debris are in the form of long and large ribbon. While in the latter case, the wear debris was granule and their size was about 10 μm. In case of 1 vol % nanometer TiO2 particle‐filled PPESK composites, the transfer film was fairly thinner and smoother, and the transfer film provided better coverage on the surface of steel ring, while that of 7.5 vol % was thicker and discrete. These account for the different friction and wear behavior of micrometer and nanometer TiO2 particle‐filled PPESK composite. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 906–914, 2004  相似文献   

17.
The polytetrafluoroethylene‐filled (PTFE) poly(m‐phenylene isophalamide) (PMIA) composite blocks are prepared by compression molding. The friction and wear of PTFE‐filled PMIA are investigated on a block‐on‐ring machine by running the PMIA composite block against plain carbon steel (AISI 1045 steel ring). The worn surface of PMIA composite and the steel counterface are examined by using electron probe microanalysis (EPMA). It is found that PTFE‐filled PMIA exhibited considerably lower friction coefficient and wear rate than pure PMIA. Furthermore, the lowest wear rate is obtained when the composite contains 20 vol % PTFE. EPMA investigations show that there are some debris that could restrain the wear of the PMIA composites oriented along the sliding track and embedded in the surface of PMIA composite. A kind of stripe transfer film that contains abundant F element should be the main reason for the improvement of the tribological properties of PTFE‐filled PMIA composites. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 747–751, 1999  相似文献   

18.
The composites of polytetrafluoroethylene (PTFE) filled with expanded graphite (EG), poly(p‐oxybenzoyl) (POB), and basalt fiber (BF) were prepared by heating compression and sintering molding. The tribological behavior of PTFE composites was investigated with a pin‐on‐disk tester under dry conditions and seawater lubrication. The worn surface of PTFE composites and the transfer film on the counterface were observed with a scanning electron microscope. The results indicated that the incorporation of EG and POB improved the hardness of PTFE composites, and addition of BF led to greater load‐carrying capacity. Compared to pure PTFE, the coefficients of friction of PTFE composites slightly increased, but the wear rates were significantly reduced (the wear rate of composite with 3% EG being only 10.38% of pure PTFE). In addition, all the composites exhibited a lower coefficient of friction (decreases of about 0.03–0.07) but more serious wear under seawater lubrication than under dry sliding. The wear mechanism changed from serious abrasive wear of pure PTFE to slight adhesion wear of PTFE composites under both conditions. A transfer film was obviously found on the counterface in seawater, but it was not observed under dry conditions. Among all the materials tested, the PTFE‐based composite containing 20% POB (mass fraction), 2% EG, and 3% BF exhibited the best comprehensive performance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2523–2531, 2013  相似文献   

19.
Nano‐micro hierarchical porous polyphenylene sulfide/polytetrafluoroethylene (PPS/PTFE) composites were prepared by mold‐leaching and vacuum melting process under high temperature condition. The tribological behaviors of porous PPS/PTFE composites and the synergism as a result of incorporation of both micro‐porogen (NaCl) and mesoporous TiO2 whiskers were investigated. The effects of mesoporous TiO2 whiskers and nonperforated TiO2 whiskers on the friction and wear properties of PPS/PTFE composites were comparatively studied, respectively. Results indicated that the wear rate of porous PPS/PTFE composites with 30 wt % NaCl and 7 wt % mesoporous TiO2 whiskers obtained the lowest values under the load of 100 N. Compared with pure PPS, the wear resistance of nano‐micro porous PPS/PTFE composite was enhanced by 6.45 × 103 times, showing outstanding wear resistance. During sliding condition, grease could be squeezed through the nano‐micro pores under the coupling effect of load and friction heat, and formed a lubricanting layer on friction surface, providing self‐lubricating effect and high wear resistance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The friction and wear behavior of Kevlar fabric composites reinforced by PTFE or graphite powders was investigated using a Xuanwu‐III friction and wear tester at dry sliding condition, with the unfilled Kevlar fabric composite as a reference. The worn surfaces were analyzed by means of scanning electron microscope, and X‐ray photoelectron spectroscopy. It was found that PTFE or graphite as fillers could significantly improve the tribological behavior of the Kevlar fabric composites, and the Kevlar fabric composites filled with 20% PTFE exhibited the best antiwear and antifriction ability among all evaluated cases. The transfer films established with two lubricants in sliding wear of composites against metallic counterparts made contributions to reducing friction coefficient and wear rate of Kevlar fabric composites. In particular, FeF2 generated in the sliding of Kevlar fabric composites filled with PTFE against counterpart pin improved the bonding strength between the transfer film and counterpart surface, which accounted for the lowest friction coefficient and wear rate of the Kevlar fabric composites filled with PTFE measured in the testing. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号