共查询到20条相似文献,搜索用时 15 毫秒
1.
Joseph A. Letizia Jonathan Rivnay Antonio Facchetti Mark A. Ratner Tobin J. Marks 《Advanced functional materials》2010,20(1):50-58
The temperature dependence of field‐effect transistor (FET) mobility is analyzed for a series of n‐channel, p‐channel, and ambipolar organic semiconductor‐based FETs selected for varied semiconductor structural and device characteristics. The materials (and dominant carrier type) studied are 5,5′′′‐bis(perfluorophenacyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 1 , n‐channel), 5,5′′′‐bis(perfluorohexyl carbonyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 2 , n‐channel), pentacene ( 3 , p‐channel); 5,5′′′‐bis(hexylcarbonyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 4 , ambipolar), 5,5′′′‐bis‐(phenacyl)‐2,2′: 5′,2″:5″,2′′′‐quaterthiophene ( 5 , p‐channel), 2,7‐bis((5‐perfluorophenacyl)thiophen‐2‐yl)‐9,10‐phenanthrenequinone ( 6 , n‐channel), and poly(N‐(2‐octyldodecyl)‐2,2′‐bithiophene‐3,3′‐dicarboximide) ( 7 , n‐channel). Fits of the effective field‐effect mobility (µeff) data assuming a discrete trap energy within a multiple trapping and release (MTR) model reveal low activation energies (EAs) for high‐mobility semiconductors 1 – 3 of 21, 22, and 30 meV, respectively. Higher EA values of 40–70 meV are exhibited by 4 – 7 ‐derived FETs having lower mobilities (µeff). Analysis of these data reveals little correlation between the conduction state energy level and EA, while there is an inverse relationship between EA and µeff. The first variable‐temperature study of an ambipolar organic FET reveals that although n‐channel behavior exhibits EA = 27 meV, the p‐channel regime exhibits significantly more trapping with EA = 250 meV. Interestingly, calculated free carrier mobilities (µ0) are in the range of ~0.2–0.8 cm2 V?1 s?1 in this materials set, largely independent of µeff. This indicates that in the absence of charge traps, the inherent magnitude of carrier mobility is comparable for each of these materials. Finally, the effect of temperature on threshold voltage (VT) reveals two distinct trapping regimes, with the change in trapped charge exhibiting a striking correlation with room temperature µeff. The observation that EA is independent of conduction state energy, and that changes in trapped charge with temperature correlate with room temperature µeff, support the applicability of trap‐limited mobility models such as a MTR mechanism to this materials set. 相似文献
2.
J. Veres S.D. Ogier S.W. Leeming D.C. Cupertino S. Mohialdin Khaffaf 《Advanced functional materials》2003,13(3):199-204
In this paper, we present a new effect influencing the operation of organic field‐effect transistors resulting from the choice of gate insulator material. In a series of studies it was found that the interaction between the insulator and the semiconductor materials plays an important role in carrier transport. The insulator is not only capable of affecting the morphology of the semiconductor layer, but can also change the density of states by local polarization effects. Carrier localization is enhanced by insulators with large permittivities, due to the random dipole field present at the interface. We have investigated this effect on a number of disordered organic semiconductor materials, and show here that significant benefits are achievable by the use of low‐k dielectrics as opposed to the existing trend of increasing the permittivity for low operational voltage. We also discuss fundamental differences in the case of field‐effect transistors with band‐like semiconductors. 相似文献
3.
J. Wang H. Wang X. Yan H. Huang D. Jin J. Shi Y. Tang D. Yan 《Advanced functional materials》2006,16(6):824-830
Ambipolar organic field‐effect transistors (OFETs) are produced, based on organic heterojunctions fabricated by a two‐step vacuum‐deposition process. Copper phthalocyanine (CuPc) deposited at a high temperature (250 °C) acts as the first (p‐type component) layer, and hexadecafluorophthalocyaninatocopper (F16CuPc) deposited at room temperature (25 °C) acts as the second (n‐type component) layer. A heterojunction with an interpenetrating network is obtained as the active layer for the OFETs. These heterojunction devices display significant ambipolar charge transport with symmetric electron and hole mobilities of the order of 10–4 cm2 V–1 s–1 in air. Conductive channels are at the interface between the F16CuPc and CuPc domains in the interpenetrating networks. Electrons are transported in the F16CuPc regions, and holes in the CuPc regions. The molecular arrangement in the heterojunction is well ordered, resulting in a balance of the two carrier densities responsible for the ambipolar electrical characteristics. The thin‐film morphology of the organic heterojunction with its interpenetrating network structure can be controlled well by the vacuum‐deposition process. The structure of interpenetrating networks is similar to that of the bulk heterojunction used in organic photovoltaic cells, therefore, it may be helpful in understanding the process of charge collection in organic photovoltaic cells. 相似文献
4.
Tracey M. Clarke Amy M. Ballantyne Jenny Nelson Donal D. C. Bradley James R. Durrant 《Advanced functional materials》2008,18(24):4029-4035
The function of organic solar cells is based upon charge photogeneration at donor/acceptor heterojunctions. In this paper, the origin of the improvement in short circuit current of poly(3‐hexylthiophene)/6,6‐phenyl C61‐butyric acid methyl ester (P3HT/PCBM) solar cells with thermal annealing is examined. Transient absorption spectroscopy is employed to demonstrate that thermal annealing results in an approximate two‐fold increase in the yield of dissociated charges. The enhanced charge generation is correlated with a decrease in P3HT's ionization potential upon thermal annealing. These observations are in excellent quantitative agreement with a model in which efficient dissociation of the bound radical pair into free charges is dependent upon the bound radical state being thermally hot when initially generated, enabling it to overcome its coulombic binding energy. These observations provide strong evidence that the lowest unoccupied molecular orbital (LUMO) level offset of annealed P3HT/PCBM blends may be only just sufficient to drive efficient charge generation in polythiophene‐based solar cells. This has important implications for current strategies to optimize organic photovoltaic device performance based upon the development of smaller optical bandgap polymers. 相似文献
5.
6.
Organic Field‐Effect Transistors: A 3D Kinetic Monte Carlo Simulation of the Current Characteristics in Micrometer‐Sized Devices 下载免费PDF全文
The electrical properties of organic field‐effect transistors (OFETs) are usually characterized by applying models initially developed for inorganic‐based devices, which often implies the use of approximations that might be inappropriate for organic semiconductors. These approximations have brought limitations to the understanding of the device physics associated with organic materials. A strategy to overcome this issue is to establish straightforward connections between the macroscopic current characteristics and microscopic charge transport in OFETs. Here, a 3D kinetic Monte Carlo model is developed that goes beyond both the conventional assumption of zero channel thickness and the gradual channel approximation to simulate carrier transport and current. Using parallel computing and a new algorithm that significantly improves the evaluation of electric potential within the device, this methodology allows the simulation of micrometer‐sized OFETs. The current characteristics of representative OFET devices are well reproduced, which provides insight into the validity of the gradual channel approximation in the case of OFETs, the impact of the channel thickness, and the nature of microscopic charge transport. 相似文献
7.
Ryan C. Nieuwendaal Hyun Wook Ro David S. Germack R. Joseph Kline Michael F. Toney Calvin K. Chan Amit Agrawal David Gundlach David L. VanderHart Dean M. Delongchamp 《Advanced functional materials》2012,22(6):1255-1266
The application of 1H spin diffusion nuclear magnetic resonance (NMR) is expanded to polymer‐fullerene blends for bulk heterojunction (BHJ) organic photovoltaics (OPV) by developing a new experimental methodology for measuring the thin films used in poly‐3‐hexylthiophene–phenyl C61‐butyric acid methyl ester (P3HT‐PCBM) OPV devices and by creating an analysis framework for estimating domain size distributions. It is shown that variations in common P3HT‐PCBM BHJ processing parameters such as spin‐coating speed and thermal annealing can significantly affect domain size distributions, which in turn affect power conversion efficiency. 1H spin diffusion NMR analysis reveals that films spin‐cast at fast speeds in dichlorobenzene are primarily composed of small (<10 nm) domains of each component; these devices exhibit low power conversion efficiencies (η = 0.4%). Fast‐cast films improve substantially by thermal annealing, which causes nanometer‐scale coarsening leading to higher efficiency (η = 2.2%). Films spin‐cast at slow speeds and then slowly dried exhibit larger domains and even higher efficiencies (η = 2.6%), but do not benefit from thermal annealing. The 1H spin diffusion NMR results show that a significant population of domains tens of nanometers in size is a common characteristic of samples with higher efficiencies. 相似文献
8.
The charge transport in pristine poly(3‐hexylthiophene) (P3HT) films and in photovoltaic blends of P3HT with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) is investigated to study the influence of charge‐carrier transport on photovoltaic efficiency. The field‐ and temperature dependence of the charge‐carrier mobility in P3HT of three different regioregularities, namely, regiorandom, regioregular with medium regioregularity, and regioregular with very high regioregularity are investigated by the time‐of‐flight technique. While medium and very high regioregularity polymers show the typical absorption features of ordered lamellar structures of P3HT in the solid state even without previous annealing, films of regiorandom P3HT are very disordered as indicated by their broad and featureless absorption. This structural difference in the solid state coincides with partially non‐dispersive transport and hole mobilities µh of around 10?4 and 10?5 cm2 V?1 s?1 for the high and medium regioregularity P3HT, respectively, and a slow and dispersive charge transport for the regiorandom P3HT. Upon blending the regioregular polymers with PCBM, the hole mobilities are typically reduced by one order of magnitude, but they do not significantly change upon additional post‐spincasting annealing. Only in the case of P3HT with high regioregularity are the electron mobilities similar to the hole mobilities and the charge transport is, thus, balanced. Nonetheless, devices prepared from both materials exhibit similar power conversion efficiencies of 2.5%, indicating that very high regioregularity may not substantially improve order and charge‐carrier transport in P3HT:PCBM and does not lead to significant improvements in the power‐conversion efficiency of photovoltaic devices. 相似文献
9.
Fullerene Additives Convert Ambipolar Transport to p‐Type Transport while Improving the Operational Stability of Organic Thin Film Transistors 下载免费PDF全文
Michael J. Ford Ming Wang Hung Phan Thuc‐Quyen Nguyen Guillermo C. Bazan 《Advanced functional materials》2016,26(25):4472-4480
Many high charge carrier mobility (μ) active layers within organic field‐effect transistor (OFET) configurations exhibit non‐linear current–voltage characteristics that may drift with time under applied bias and, when applying conventional equations for ideal FETs, may give inconsistent μ values. This study demonstrates that the introduction of electron deficient fullerene acceptors into thin films comprised of the high‐mobility semiconducting polymer PCDTPT suppresses an undesirable “double‐slope” in the current–voltage characteristics, improves operational stability, and changes ambipolar transport to unipolar transport. Examination of other high μ polymers shows general applicability. This study also shows that one can further reduce instability by tuning the relative electron affinity of the polymer and fullerene by creating blends containing different fullerene derivatives and semiconductor polymers. One can obtain hole μ values up to 5.6 cm2 V–1 s–1 that are remarkably stable over multiple bias‐sweeping cycles. The results provide a simple, solution‐processable route to dictate transport properties and improve semiconductor durability in systems that display similar non‐idealities. 相似文献
10.
H.S. Lee D.H. Kim J.H. Cho Y.D. Park J.S. Kim K. Cho 《Advanced functional materials》2006,16(14):1859-1864
With the aim of improving the field‐effect mobility of transistors by promoting the interconnectivity of the grains in pentacene thin films, deposition conditions of the pentacene molecules using one‐step (total thickness of layer 50 nm: 0.1 Å s–1) and two‐step (first layer 10 nm: 0.1 Å s–1, second layer 40 nm: 4.0 Å s–1) depositions are controlled. Significantly, it is found that the continuities of the pentacene thin films vary with the deposition conditions of the pentacene molecules. Specifically, a smaller number of voids is observed at the interface for the two‐step deposition, which results in field‐effect mobilities as high as 1.2 cm2 V–1 s–1; these are higher by more than a factor of two than those of the pentacene films deposited in one step. This remarkable increase in field‐effect mobility is due in particular to the interconnectivity of the pentacene grains near the insulator substrate. 相似文献
11.
Amy M. Ballantyne Lichun Chen Justin Dane Thomas Hammant Felix M. Braun Martin Heeney Warren Duffy Iain McCulloch Donal D. C. Bradley Jenny Nelson 《Advanced functional materials》2008,18(16):2373-2380
The time‐of‐flight method has been used to study the effect of P3HT molecular weight (Mn = 13–121 kDa) on charge mobility in pristine and PCBM blend films using highly regioregular P3HT. Hole mobility was observed to remain constant at 10?4 cm2V?1s?1 as molecular weight was increased from 13–18 kDa, but then decreased by one order of magnitude as molecular weight was further increased from 34–121 kDa. The decrease in charge mobility observed in blend films is accompanied by a change in surface morphology, and leads to a decrease in the performance of photovoltaic devices made from these blend films. 相似文献
12.
Michael J. Ford Ming Wang Hung Phan Thuc‐Quyen Nguyen Guillermo C. Bazan 《Advanced functional materials》2016,26(25):4616-4616
13.
14.
Matthew Waldrip Oana D. Jurchescu David J. Gundlach Emily G. Bittle 《Advanced functional materials》2020,30(20)
Organic semiconductors have sparked interest as flexible, solution processable, and chemically tunable electronic materials. Improvements in charge carrier mobility put organic semiconductors in a competitive position for incorporation in a variety of (opto‐)electronic applications. One example is the organic field‐effect transistor (OFET), which is the fundamental building block of many applications based on organic semiconductors. While the semiconductor performance improvements opened up the possibilities for applying organic materials as active components in fast switching electrical devices, the ability to make good electrical contact hinders further development of deployable electronics. Additionally, inefficient contacts represent serious bottlenecks in identifying new electronic materials by inhibiting access to their intrinsic properties or providing misleading information. Recent work focused on the relationships of contact resistance with device architecture, applied voltage, metal and dielectric interfaces, has led to a steady reduction in contact resistance in OFETs. While impressive progress was made, contact resistance is still above the limits necessary to drive devices at the speed required for many active electronic components. Here, the origins of contact resistance and recent improvement in organic transistors are presented, with emphasis on the electric field and geometric considerations of charge injection in OFETs. 相似文献
15.
16.
E.A. Plummer A. vanDijken J.W. Hofstraat L. DeCola K. Brunner 《Advanced functional materials》2005,15(2):281-289
This paper reports an analysis of the properties of polymer light‐emitting devices (PLEDs) doped with iridium complexes. Devices based on charged and neutral complexes doped into poly(vinylcarbazole) (PVK) are presented, and the role of the ions and the charge‐transport properties of the complexes are discussed. In devices with the charged complexes, the concentration of the complex is found to have a profound effect on both the switch‐on voltage and the efficiency. At higher doping concentrations the efficiency is increased and the switch‐on voltage decreased. The increase in efficiency and decrease in switch‐on voltage at higher dopant concentration are found to be due to an alternative charge transport path via the iridium dopant [Ir(bpy)]+ (bis(2‐phenylpyridine‐C2,N′)(2,2′‐bipyridine)iridium hexafluorophosphate). However, at lower concentrations the complex becomes an electron trap and the efficiency is reduced. The devices are found to be significantly less efficient than those with neutral complexes. This difference is attributed to the ionic content and the charge trapping properties of the charged complexes. The low efficiency of the charged‐complex‐based devices could be overcome by utilizing a hole‐blocking layer; devices with efficiencies as high as 23 cd A–1 were obtained. 相似文献
17.
18.
John G. Labram Ester Buchaca Domingo Natalie Stingelin Donal D. C. Bradley Thomas D. Anthopoulos 《Advanced functional materials》2011,21(2):356-363
Organic field‐effect transistors (OFETs) are used to investigate the evolution of the solid‐state microstructure of blends of poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl C61‐butyric acid methyl ester (PC61BM) upon annealing. Changes in the measured field‐effect mobility of holes and electrons are shown to reveal relevant information about the phase‐segregation in this system, which are in agreement with a eutectic phase behavior. Using dual‐gate OFETs and in‐situ measurements, it is demonstrated that the spatial‐ and time‐dependence of microstructural changes in such polymer:fullerene blend films can also be probed. A percolation‐theory‐based simulation is carried out to illustrate how phase‐segregation in this system is expected to lead to a substantial decrease in the electron conductivity in an OFET channel, in qualitative agreement with experimental results. 相似文献
19.
A. Brillante I. Bilotti C. Albonetti J.‐F. Moulin P. Stoliar F. Biscarini D. M. de Leeuw 《Advanced functional materials》2007,17(16):3119-3127
We report confocal micro‐Raman spectra of the organic semiconductor α‐sexithiophene (T6) on bulk crystals and on thin films grown on technologically relevant substrates and devices. We show that the two polymorphs, which are clearly identified by their lattice phonon spectra, may coexist as physical impurities of one inside the other in the same crystallite. Spatial distribution of the two phases is monitored by Raman phonon mapping of crystals grown upon different conditions. Raman microscopy has then been extended to T6 thin films grown on silicon oxide wafers. We identify the crystal phase in thin films whose thickness is just 18 nm. The most intense total‐symmetric Raman vibration is still detectable for a two‐monolayer thick film. Comparative analysis between micro‐Raman and AFM of T6 thin films grown on field effect transistors shows that electrode‐channel steps favour the nucleation and growth of T6 molecules on the substrate, at least below 50 nm. 相似文献
20.
S.A. Choulis V.‐E. Choong A. Patwardhan M.K. Mathai F. So 《Advanced functional materials》2006,16(8):1075-1080
The performance of organic electronic devices is often limited by injection. In this paper, improvement of hole injection in organic electronic devices by conditioning of the interface between the hole‐conducting layer (buffer layer) and the active organic semiconductor layer is demonstrated. The conditioning is performed by spin‐coating poly(9,9‐dioctyl‐fluorene‐co‐N‐ (4‐butylphenyl)‐diphenylamine) (TFB) on top of the poly(3,4‐ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) buffer layer, followed by an organic solvent wash, which results in a TFB residue on the surface of the PEDOT:PSS. Changes in the hole‐injection energy barriers, bulk charge‐transport properties, and current–voltage characteristics observed in a representative PFO‐based (PFO: poly(9,9‐dioctylfluorene)) diode suggest that conditioning of PEDOT:PSS surface with TFB creates a stepped electronic profile that dramatically improves the hole‐injection properties of organic electronic devices. 相似文献