首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Carbon nanotubes (CNTs) and barium titanate (BaTiO3) (BT) were simultaneously introduced into the immiscible blend poly(ethylene‐co‐vinyl acetate)/thermoplastic urethane (EVA/TPU), and the EVA/TPU/CNT/BT quaternary polymer composite blends with core–shell structured island TPU domain were successfully prepared, in which CNTs in the TPU domain act as the core and the BT spheres at the interface of the TPU and EVA act as the shell. A core–shell structured island can lead to the formation of micro‐capacitors and further accumulate electron storage owing to the incorporation of CNTs and BT; on the other hand, a BT shell can be assembled along the TPU spheres, reducing the possibility of formation of a conductive CNT network, resulting in suppressed dielectric loss. Therefore, CNTs and BT were tailor‐made into blend composites with a core–shell structured domain, which can achieve an increased dielectric constant by 176% and decreased low dielectric loss by 80% compared with the blend composites with only CNTs in the TPU domain. © 2019 Society of Chemical Industry  相似文献   

2.
Triple‐shape‐memory polymers are capable of memorizing two temporary shapes and sequentially recovering from the first temporary shape to the second temporary shape and eventually to the permanent shape upon exposure to a stimulus. In this study, unique three‐component, multilayered films with an ATBTA configuration [where A is polyurethane (PU), B is ethylene vinyl acetate (EVA), and T is poly(vinyl acetate) (PVAc)] were produced as a triple‐shape‐memory material via a forced‐assembly multilayer film coextrusion process from PU, EVA, and PVAc. The two well‐separated thermal transitions of the PU–EVA–PVAc film, the melting temperature of EVA and the glass‐transition temperature of PVAc, allow for the fixing of the two temporary shapes. The cyclic thermomechanical testing results confirm that the 257‐layered PU–EVA–PVAc films possessed outstanding triple‐shape‐memory performance in terms of the shape fixity and shape‐recovery ratios. This approach allowed greater design flexibility and simultaneous adjustment of the mechanical and shape‐memory properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44405.  相似文献   

3.
In this study, the effects of different parameters on the morphological properties of ternary blends were investigated. Therefore two systems (PET/H‐EVA/PP and PET/L ‐EVA/PP, H‐EVA and L ‐EVA are high and low viscosity, respectively) were prepared by melt mixing process. In all of the blends, poly (ethylene terephthalate) (PET) as the major phase‐ with poly propylene (PP) and two grades of poly (ethyl‐stat‐vinylacetate) (EVA) with different viscosities and subsequently different interfacial interactions was blended. Theoretical models predicted positive spreading coefficient for two grades of EVA and lower free energy for the samples consisting of EVA and PP as the shell and the core phases respectively. With changing core shell ratio, droplet size of samples containing L ‐EVA and H‐EVA increased and decreased, respectively. Subinclusion of shell into the core was observed in some blended samples. In systems containing H‐EVA, by thickening the shell phase; multi core morphology was observed which would be related to the coalescence phenomenon inter the droplets. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Waste polyurethane foam (w‐PU) and waste ethylene–vinyl acetate foam (w‐EVA) were used as fillers for the production of an ethylene–vinyl acetate (EVA) blend foam. Two different foaming techniques (single‐stage and heat–chill processes) were used for this purpose. The waste foam concentration was varied up to 30 wt % of the original EVA. The physical, mechanical, and morphological properties of the filled foam were studied. The single‐stage process produced blend foams with a lower density and a greater cell size than the foams obtained by the heat–chill process. The density and compression strength of the blend foam increased as the percentage of w‐PU foam increased. However, for the w‐EVA/EVA blend foams, the addition of w‐EVA foam did not significantly affect the density or compression strength compared to the original EVA foams. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44708.  相似文献   

5.
A novel oligomeric phosphorous–nitrogen‐containing intumescent flame retardant poly (2,6‐diaminopyridine spirocyclic pentaerythritol bisphosphonate) (PDSPB) is synthesized, and subsequently multiwalled carbon nanotube (MWNT)‐grafted oligomeric intumescent flame retardant, MWNT‐g‐PDSPB, is fabricated via chemical grafting reaction and characterized. The grafting reaction was characterized by FTIR, NMR, and XPS. After high‐density PDSPB (88 wt%) were attached to the MWNTs, core‐shell nanostructures with MWNTs as the hard core and PDSPB as the soft shell were formed. The resultant MWNT‐g‐PDSPB was soluble and stable in polar solvents, such as DMF and DMSO. MWNT‐g‐PDSPB has excellent thermal stability and charring ability. The TEM results showed that the functionalized MWNTs could achieve better dispersion in poly(ethylene vinyl acetate) (EVA) matrix. The residue char of MWNT‐g‐PDSPB is as high as 70 wt%, and the grafting of intumescent flame retardant of PDSPB can improve both the dispersion of MWNTs in polymer matrix and flame retardancy of the nanocomposites. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

6.
The spinnability and mechanical properties of poly(propylene) (PP)/zeolite‐supported Ag+ (zeolite‐Ag)/ethylene vinyl acetate (EVA) ternary blend fibers were studied. It was found that the spinning temperature of the ternary blend fibers was decreased in the presence of EVA. The addition of 2 wt % EVA substantially improved the spinnability of the blend system by enhancing its flowability. It was also found that the ternary fiber with EVA28 (28 wt % vinyl acetate content) showed balanced improvement of mechanical properties by a concomitant increase in modulus and tensile strength. The improvements of spinnability and mechanical properties suggested that a core–shell structure of zeolite‐Ag/EVA28 particles, with zeolite‐Ag as the core and EVA28 as the shell, was formed and remained during the melt‐mixing process of the blended chips and during the course of fiber processing. EVA probably enhanced the binding between the zeolite‐Ag and the PP matrix, as made evident in SEM microphotographs. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1460–1466, 2005  相似文献   

7.
The effect of polyurethane (PU) foam on the morphological and transport properties of ethylene vinyl acetate (EVA) with 9% vinyl acetate and the potential application of 3%bentonite/28.5% PU/68.5% EVA composites fabricated via the melt‐blending method in heavy‐metal extraction from water systems were investigated. EVA did not swell in water, whereas the PU/EVA blend attained a maximum percentage of deionized water uptake of 2.158 mol %. A 3% bentonite/28.5% PU/68.5% EVA composite blend successfully removed 90% of Pb2+ from an aqueous solution with an initial concentration of 30 mg/L, whereas 3% bentonite/97% EVA could only extract 7.323% of Pb2+ ions. Pb2+ adsorption was found to obey the Langmuir adsorption isotherm and pseudo‐second‐order kinetic model. Thermodynamic studies demonstrated that the adsorption was favorable at room temperature and the uptake of Pb2+ was mostly by physical adsorption, as also indicated by the value n = 2.449 (where n is an empirical parameter indicating transport mode) from the Freundlich adsorption isotherm. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
In using recycled poly(ethylene terephthalate) (PET) as a petroleum sorbent we tried to achieve two important objectives simultaneously. PET waste was glycolized using trimethylolpropane (TMp) or pentaerytheritol (PEr) to produce suitable polyol oligomers for polyurethane (PU) foams. The glycolysis was carried out in the presence of manganese acetate as a catalyst under normal pressure in m‐cresol at 220 °C. Producing polyols, PEr degraded PET into lower molecular weights than TMp. So prepared oligomers were reacted with 2,4‐toluene diisocyanate providing several types of PU foam. The effect of various variables (polyol reactivity, water content, type of catalyst, isocyanate amount and surfactant) on the foam structure and properties were analyzed. Porosity of the PU foams was examined using environmental scanning electron microscopy. Foams based on glycolized TMp contain small uniform cells whereas other foams form less uniform cells with varying sizes including closed cells. Dynamic mechanical analysis gives much lower storage moduli for TMp‐based PUs that for those based on PEr, an effect of dangling ethylene chains in the former case. The glass transition temperatures Tg are higher when PEr rather than TMp is used. Our PU foams show good sorption properties and sufficient reusability. Copyright © 2012 Society of Chemical Industry  相似文献   

9.
To study the relationship among relaxation peaks observed in dynamic mechanical experiments and the structure of poly(ethylene‐co‐vinyl acetate) (EVA), EVA copolymers with different substitution in the carbonyl group were synthesized. EVA was hydrolyzed to obtain poly (ethylene‐co‐vinyl alcohol) and was subsequently reacted with formic, hexanoic, and octanoic acids. The copolymers synthesized were characterized by infrared spectroscopy. Analysis of the DMA spectra of the copolymers showed that their relaxation behavior depends on the vinyl acetate concentration. The α‐ and β‐transitions were observed in EVA copolymers with 8 and 18 wt % of functional groups, and the relationship among relaxation process with the structure of polymer was investigated. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1371–1376, 2005  相似文献   

10.
With a shell of poly (methyl methacrylate‐co‐hydroxyl ethyl acrylate) (PMMA‐HA), microencapsulated ammonium polyphosphate (MHAPP) is prepared by in situ polymerization. The core‐shell structure of the reactive flame retardant (FR) is characterized by Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The results of water leaching rate and water contact angle measurements show that ammonium polyphosphate (APP) is well coated by a hydrophobic shell. Due to the presence of active groups (–OH) and hydrophobic groups (–CH3) in shell, MHAPP exhibits better compatibility, flame retardancy, and water resistance compared with neat ammonium polyphosphate (APP) in rigid polyurethane foam (PU). Compression strength of PU/MHAPP with suitable loading is higher than that of PU/APP and PU, the reason is that the active groups in shell can improve the compatibility of MHAPP in PU composite. From thermal stability and residue analysis, it can be seen that the presence of reactive flame retardant shows positive effect on thermal stability of PU composite at high temperature, results also indicate that MHAPP can promote the carbonization formation efficiency of PU composite during combustion process compared with APP. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42800.  相似文献   

11.
A core–shell latex comprising poly(butyl acrylate) as core and poly(styrene‐methyl methacrylate) as shell was synthesized by emulsion polymerization using allyloxy nonylphenoxy propanol polyoxyethylene ether ammonium sulfonate (ANPS) as emulsifier. Transmission electron microscope, differential scanning calorimeter, and thermogravimetric analyses suggested the prepared latex had a core–shell structure. The particle size of the core–shell latex was about 102.8 nm with a molar ratio of butylacrylate, methyl methacrylate, and styrene at 6 : 2 : 2, a mass ratio of ANPS and monomers, ammonium persulfate and monomers at 15% and 1.0%, respectively. The core–shell latex showed high centrifugal stability and excellent freeze‐thaw stability. The clogging nozzle rate of the pigmented ink containing 20 wt % core–shell latex was small, whereas the printed fabrics with this pigmented ink exhibited high rub and washing fastness. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Chitosan (CS) and polyurethane‐chitosan (PU‐CS) nano‐particles (NPs) were prepared for the core formation by complex coacervation method whereas alginate (ALG) and PU‐ALG were crosslinked by ionic gelation method to form the protective shell‐layer over the core. Effects of PU incorporation either within the core or shell or both were investigated by different in vitro and in vivo parameters. Fourier transform infrared (FTIR) spectroscopy of different compositions of nano‐particles showed distinct characteristic peaks for CS, PU, and ALG, indicating their presence in variable ratios. Significance of polyurethane‐incorporated systems towards insulin encapsulation efficiency, swelling parameters, insulin release, and in vivo pharmacological effect were also studied. Particle sizes, zeta potential, morphological analysis, mucoadhesion study, and in vivo acute toxicity studies of these core–shell nano‐particles were also performed. Bioavailability of insulin ranged from 9.04% to 11.6% for polyurethane‐incorporated chitosan‐alginate core–shell nano‐particle formulations which was significantly higher than the insulin bioavailability of basic CS/ALG core–shell nano‐particle system. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46365.  相似文献   

13.
Elastomer foams based on EVA, PU, and EVA/PU blends formulated for shoe‐sole applications were prepared by a supercritical N2 batch foaming process and characterized for physicomechanical, friction and abrasion properties. The blending of EVA with PU was aimed for improving the friction and wear characteristics of the EVA based foams. All of the foams prepared showed spherical cells with closed‐cell morphology and the cell sizes varied with varying the EVA/PU blend ratio and CaCO3 content of the foams. The properties such as hardness and resilience, friction coefficients and abrasion resistance improved for the EVA/PU blend foams compared to the EVA foam, but their compression set, tensile strength, and tear strength were inferior to the EVA foam. The incorporation of CaCO3 filler increased density, hardness, tensile strength, and tear strength of the EVA/PU blend foams but decreased resilience, compression set, friction coefficients, and abrasion resistance. The improvement in friction coefficients and wear resistance obtained in the EVA/PU blend foams was significant for shoe‐sole applications. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

14.
Solid particles can be used as stabilizers for oil/water (o/w) emulsions instead of the conventional surfactants. Emulsion polymerization of styrene, as an example of polymerizable oil, was started in the current study after ultrasonication of the monomer into aqueous phase with aid of montmorillonite nanoplatelets as solid stabilizer. Imaging using a field emission scanning electron microscopy equipped with energy dispersive X‐ray unit as well as transmission electron microscopy proved the formation of polystyrene/montmorillonite as core–shell hybrid latex particles via Pickering mode of emulsification. The mechanical properties of polypropylene (PP) and ethylene vinyl acetate copolymer (EVA) were studied after addition of various loadings of these hybrids (2, 4, 8, 12, and 14 wt%). It could be ensured that the tolerance of PP towards phase separation caused by the insertion of the core–shell particles was higher than that of EVA, which translates into different extents of reinforcements. POLYM. ENG. SCI., 55:1546–1552, 2015. © 2015 Society of Plastics Engineers  相似文献   

15.
The cationic–nonionic dispersing centers with different chain lengths of poly ethylene glycol methyl ether (N‐PDEA 750, N‐PDEA 2000) were prepared from N‐diethanol amine (NDEA), isophorone diisocyanate (IPDI), and poly(ethylene glycol methyl ether) (PEO Mw = 750 and 2000), whereas aqueous cationic–nonionic polyurethane (N‐PDEA PU) with different side chain lengths were prepared by N‐PDEA 750 (or N‐PDEA 2000), 4,4‐methylene bis(isocyantocyclohexane) (H12MDI), polytetramethylene glycol (PTMG 2000), ethylene diamine (EDA), and glycolic acid (GA) as cationic–nonionic dispersing center, hard segment, soft segment, chain extender, and quarternizing agent, respectively. The thermal and mechanical properties of PU casting film were then discussed. We also used N‐methyldiethyolamine (N‐MDEA) without PEO as cationic dispersing center to synthesize aqueous cationic PU (N‐MDEA PU). The PU blends were blending N‐PDEA 750 PU and N‐MDEA PU by different weight ratios and the physical properties of casting films and coated fabric of PU and PU blends were investigated. Regarding the thermal properties, we have found out that the cationic–nonionic PU (N‐PDEA 750 PU, N‐PDEA 2000 PU) has lower Tgs, Tms, TmH, and ΔHH than N‐MDEA PU, apart from ΔHs. The N‐PDEA 2000 PU with longer side‐chain PEO has lower Tgs, higher Tms and ΔHs than N‐PDEA 750 PU. As for mechanical property, N‐PDEA PU has lower tensile strength of casting film compared with N‐MDEA PU. Regarding the comparison of side chain length of PEO, N‐PDEA 2000 PU with longer side chain has higher tensile strength than N‐PDEA 750 PU with shorter side chain length. In addition, N‐PDEA 2000 PU group that shows hard property in stress–strain curve, whereas N‐PDEA 750 PU shows soft property. The tensile strength of PU blends decreases as the content of N‐PDEA 750 PU increases. When the low‐blend ratio of N‐PDEA 750 PU (e.g., 5%), the tensile strength of casting film only shows less influence that can improve the elongation effectively. In terms of coating‐treated fabrics, cationic–nonionic PU‐coated fabrics show lower waterproof capacity (WP) than those treated by cationic PU. However, the water vapor permeability (WVP) and antiyellowing of the N‐PDEA 750 PU coated fabrics are significantly better than the one treated by cationic polyurethane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2963–2974, 2006  相似文献   

16.
BACKGROUND: The aim of this work was to develop polyhydroxyalkanoates (PHAs) for blood contact applications, and to study their self‐assembly behavior in aqueous solution when the PHAs are incorporated with hydrophilic segments. To do this, poly(ester‐urethane) (PU) multiblock copolymers were prepared from hydroxyl‐terminated poly(ethylene glycol) (PEG) and hydroxylated poly[(R)‐3‐hydroxyalkanoate] (PHA‐diol) using 1,6‐hexamethylene diisocyanate as a coupling reagent. The PEG segment functions as a soft, hydrophilic and crystalline portion and the poly[(R)‐3‐hydroxybutyrate] segment behaves as a hard, hydrophobic and crystalline portion. In another series of PU multiblock copolymers, crystalline PEG and completely amorphous poly[((R)‐3‐hydroxybutyrate)‐co‐(4‐hydroxybutyrate)] behaved as hydrophobic and hydrophilic segments, respectively. RESULTS: The formation of a PU series of block copolymers was confirmed by NMR, gel permeation chromatography and infrared analyses. The thermal properties showed enhanced thermal stability with semi‐crystalline morphology via incorporation of PEG. Interestingly, the changes of the hydrophilic/hydrophobic ratio led to different formations in oil‐in‐water emulsion and surface patterning behavior when cast into films. Blood compatibility was also increased with increasing PEG content compared with PHA‐only polymers. CONCLUSION: For the first time, PHA‐based PU block copolymers have been investigated in terms of their blood compatibility and aggregation behavior in aqueous solution. Novel amphiphilic materials with good biocompatibility for possible blood contact applications with hydrogel properties were obtained. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
Novel amphiphilic star‐shaped terpolymers comprised of hydrophobic poly(?‐caprolactone), pH‐sensitive polyaminoester block and hydrophilic poly(ethylene glycol) (Mn = 1100, 2000 g mol?1) were synthesized using symmetric pentaerythritol as the core initiator for ring‐opening polymerization (ROP) reaction of ?‐caprolactone functionalized with amino ester dendrimer structure at all chain ends. Subsequently, a second ROP reaction was performed by means of four‐arm star‐shaped poly(?‐caprolactone) macromer with eight ‐OH end groups as the macro‐initiator followed by the attachment of a poly(ethylene glycol) block at the end of each chain via a macromolecular coupling reaction. The molecular structures were verified using Fourier transform infrared and 1H NMR spectroscopies and gel permeation chromatography. The terpolymers easily formed core–shell structural nanoparticles as micelles in aqueous solution which enhanced drug solubility. The hydrodynamic diameter of these agglomerates was found to be 91–104 nm, as measured using dynamic light scattering. The hydrophobic anticancer drug curcumin was loaded effectively into the polymeric micelles. The drug‐loaded nanoparticles were characterized for drug loading content, encapsulation efficiency, drug–polymer interaction and in vitro drug release profiles. Drug release studies showed an initial burst followed by a sustained release of the entrapped drug over a period of 7days at pH = 7.4 and 5.5. The release behaviours from the obtained drug‐loaded nanoparticles indicated that the rate of drug release could be effectively controlled by pH value. Altogether, these results demonstrate that the designed nanoparticles have great potential as hydrophobic drug delivery carriers for cancer therapy. © 2015 Society of Chemical Industry  相似文献   

18.
Seeded suspension copolymerization or a one‐stage copolymerization was used to synthesize acrylate core/shell imbiber beads. A two‐stage polymerization technique was used for seeded suspension polymerization. The seed particles for poly(methyl acrylate) or poly(2‐ethylhexyl acrylate) were synthesized first in a mixed solvent of toluene/isooctane containing the ethylene glycol dimethacrylate (EGDMA) crosslinking agent. These beads were swollen in styrene‐EGDMA‐BPO (benzoyl peroxide) and then polymerized in the aqueous phase to produce the polystyrene (PS) shell. The one‐stage copolymerization was carried out in toluene/isooctane containing methyl methacrylate (MMA), styrene (St), EGDMA, and BPO at 75°C for 10 h to give a core/shell copolymer of St‐MMA morphology. The appearance of core/shell imbiber beads prepared from these two techniques varied from monomer to monomer. This article describes the preparation, characterization, and application of the core/shell beads for organic solvent absorption/desorption. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 670–682, 2002  相似文献   

19.
This article describes the development of a new crosslinked poly(methyl methacrylate‐2‐hydroxyethyl methacrylate) copolymeric core–shell hydrogel microsphere incorporated with ibuprofen for potential applications in bone implants. Initially poly(methyl methacrylate) (PMMA) core microspheres were prepared by free‐radical initiation technique. On these core microspheres, 2‐hydroxyethyl methacrylate (HEMA) was polymerized by swelling PMMA microspheres with the HEMA monomer by using ascorbic acid and ammonium persulfate. Crosslinking monomers such as ethylene glycol dimethacrylate (EGDMA) has also been included along with HEMA for polymerization. By this technique, it was possible to obtain core–shell‐type microspheres. The core is a hard PMMA microsphere having a hydrophilic poly(HEMA) shell coat on it. These microspheres are highly hydrophilic as compared to PMMA microspheres. The size of the hydrogel microspheres almost doubled when swollen in benzyl alcohol. These microspheres were characterized by various techniques such as optical microscopy, scanning electron microscopy, Fourier‐transformed infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The particle size of both microspheres was analyzed by using Malvern Master Sizer/E particle size analyzer. The in vitro release of ibuprofen from both microspheres showed near zero‐order patterns. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3045–3054, 2002; DOI 10.1002/app.10310  相似文献   

20.
A novel polyurethane (PU)‐SiO2 core–shell particle dispersion was prepared by an acid‐catalyzed sol–gel process using cationic–nonionic PU particle as template. Results of average sizes, polydispersity index, and transmission electron microscope indicated that tetramethylorthosilicate were first diffused to the surface of PU particles, then occurring hydrolysis–condensation reaction to form core–shell particles. Antireflection coating formulation was prepared by as‐prepared core–shell particle dispersion and SiO2 sol binder. After dip‐coating in the formulation, antireflection coating was formed on glass surface by calcination. Scanning electron microscopy images showed that pores had been formed inside coating after removing PU template particles, and the coating surface could be almost fully closed. In addition, ultraviolet–visible spectrophotometer analysis showed that the maximum transmittance of antireflection glasses can be as high as 98.6% at 548 nm. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45762.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号