首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper is concerned with the problem of H filtering for discrete‐time Markov jump linear system with parametric uncertainties and quantized measurements, when the jumping mode information is not accessible. By converting the quantized errors into a sector‐bounded nonlinearity, the parametric uncertainties and measurements quantization are dealt with in a unified framework. The mode‐independent H filter is designed, and sufficient conditions are established via Lyapunov function approach, such that for all possible uncertain parameters and quantization errors, the resulting filtering error system is robustly stochastically stable and achieves a guaranteed H filtering error performance index. A numerical example is provided to demonstrate the feasibility and effectiveness of the proposed approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is concerned with the problem of finite‐time H filtering for a class of Markovian jump systems subject to partial information on the transition probabilities. By introducing some slack matrix variables in terms of probability identity, a less conservative bounded real lemma is derived to ensure that filtering Markovian jump systems is finite‐time stable. Finally, the existence criterion of the desired filter is obtained such that the corresponding filtering error system is finite‐time bounded with a guaranteed H performance index. An example is given to illustrate the efficiency of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This paper investigates the problems of H disturbance attenuation and H filtering for Markovian jump systems with interval time‐varying delays. In terms of linear matrix inequalities, a less conservative delay‐range‐dependent H performance condition for Markovian jump systems is proposed by constructing a different Lyapunov–Krasovskii functional. The resulting criterion has advantages over some previous ones in that they involve fewer matrix variables, but has less conservatism. Based on this new condition, an improved H filtering algorithm is developed. Numerical examples are provided to demonstrate the efficiency and reduced conservatism of the results in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is concerned with the problems of stability analysis, H performance analysis, and robust H filter design for uncertain Markovian jump linear systems with time‐varying delays. The purpose is to improve the existing results on these problems. Firstly, a new delay‐dependent stability criterion is obtained on the basis of a novel mode‐dependent Lyapunov functional. Secondly, a new delay‐dependent bounded real lemma (BRL) is derived. It is shown that the presented stability criterion and the BRL are less conservative than the existing ones in the literature. Thirdly, with the new BRL, delay‐dependent conditions for the solvability of the addressed H filtering problem are given. All the results obtained in this paper are expressed by means of strict linear matrix inequalities. Three numerical examples are provided to demonstrate the utility of the proposed methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a novel design approach for the finite frequency (FF) H filtering problem for discrete‐time state‐delayed systems with quantized measurements. The system state and output are assumed affected by FF external noises. Attention is focused on the design of a stable filter that guarantees the stability and a prescribed ?2 gain performance level for the filtering error system in the FF domain of input noises. Sufficient conditions for the solvability of this problem are developed by choosing an appropriate Lyapunov‐Krasovskii functional based on the delay partitioning technique and using the FF ?2 gain definition combined with the generalized S‐procedure. Then, by means of Finsler's lemma, the derived conditions are linearized and additional slack variables are further introduced to more flexible result. Final filter design conditions are consequently established in terms of linear matrix inequalities in three different frequency ranges, ie, low‐, middle‐ and high‐frequency range. Finally, a simulation example is presented to illustrate the effectiveness and the merits of the proposed approach.  相似文献   

6.
In this paper, the reliable H filtering problem is studied for a class of discrete nonlinear Markovian jump systems with sensor failures and time delays. The transition probabilities of the jumping process are assumed to be partly unknown. The failures of sensors are quantified by a variable taking values in a given interval. The time‐varying delay is unknown with given lower and upper bounds. The purpose of the addressed reliable H filtering problem is to design a mode‐dependent filter such that the filtering error dynamics is asymptotically mean‐square stable and also achieves a prescribed H performance level. By using a new Lyapunov–Krasovskii functional and delay‐partitioning technique, sufficient delay‐dependent conditions for the existence of such a filter are obtained. The filter gains are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi‐definite programme method. A numerical example is provided to demonstrate the effectiveness of the proposed design approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the problem of robust H filtering for switched linear discrete‐time systems with polytopic uncertainties is investigated. Based on the mode‐switching idea and parameter‐dependent stability result, a robust switched linear filter is designed such that the corresponding filtering error system achieves robust asymptotic stability and guarantees a prescribed H performance index for all admissible uncertainties. The existence condition of such filter is derived and formulated in terms of a set of linear matrix inequalities (LMIs) by the introduction of slack variables to eliminate the cross coupling of system matrices and Lyapunov matrices among different subsystems. The desired filter can be constructed by solving the corresponding convex optimization problem, which also provides an optimal H noise‐attenuation level bound for the resultant filtering error system. A numerical example is given to show the effectiveness and the potential of the proposed techniques. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The melt‐spun ribbons of Pr‐Fe‐Co‐V‐W‐Si‐B system alloys were prepared by single roller rapid‐quenching method. The effects of composition, surface velocity, and heat treatment on the magnetic properties were investigated. The P9sFe71Co8V0.5W0.5Si0.5B10.5 alloy ribbons prepared at a surface velocity of 12.5 m/s were crystallized by heat treatment, and the optimum heat‐treatment condition was found to be at 575°C for 3 min, for which the magnetic properties were (BH)max = 136.1 kJ/m3, Jr = 0.93 T, HcJ = 652.2 kA/m, and HcB = 528.3 kA/m. The temperature coefficients of Jr and HcJ for the ribbons crystallized from melt‐spun ribbons of Pr9Fe71Co8V0.5W0.5Si0.5B10.5 alloy were α(Jr)ave = ?0.057%/°C and α(HcJ) = ?0.450%/°C. The value of (B)max for the compression molding Pr9Fe71Co8V0.5W0.5Si0.5B10.5 isotropic bonded magnet prepared by using the ribbons annealed at 575°C for 3 min is 80.0 kJ/m3, and the density is 6.24 Mg/m3. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 157(3): 10–16, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20211 Copyright © 2006 Wiley Periodicals, Inc.  相似文献   

9.
This paper is devoted to the problem of robust H filtering for a class of uncertain switched neutral systems subject to stochastic disturbance and time‐varying delay. Attention is focused on the design of a full‐order switched filter such that the filtering error system is robust mean‐square exponentially stable with a prescribed weighted H performance. On the basis of the average dwell time approach and the piecewise Lyapunov function technique, sufficient conditions for the solvability of this problem are obtained in terms of linear matrix inequalities. Then, by solving the corresponding linear matrix inequalities, the desired full‐order switched filter is derived for all admissible uncertainties, time‐varying delay, and stochastic disturbances. A numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, the fault detection problem is investigated for a class of discrete‐time switched singular systems with time‐varying state delays. The residual generator is firstly constructed based on a switched filter, and the design of fault detection filter is formulated as an H filtering problem, that is, minimizing the error between residual and fault in the H sense. Then, by constructing an appropriate decay‐rate‐dependent piecewise Lyapunov function and using the average dwell time scheme, a sufficient condition for the residual system to be regular, causal, and exponential stable while satisfying a prescribed H performance is derived in terms of linear matrix inequalities (LMIs). The corresponding solvability condition for the desired fault detection filters is also established via LMI approach. Finally, a numerical example is presented to show the effectiveness of the developed theoretical results.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This paper considers the problem of robust delay‐dependent L2L filtering for a class of Takagi–Sugeno fuzzy systems with time‐varying delays. The purpose is to design a fuzzy filter such that both the robust stability and a prescribed L2L performance level of the filtering error system are guaranteed. A delay‐dependent sufficient condition for the solvability of the problem is obtained and a linear matrix inequality (LMI) approach is developed. A desired filter can be constructed by solving a set of LMIs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The paper evaluates the essential electrical properties—capacitance and equivalent series resistance (ESR)—of hydrocarbon‐derived electrolytes for supercapacitors using galvanostatic, constant resistance charge–discharge, cyclic voltammetry, and AC impedance measurements. The electrolytes were systematically prepared from six hydrocarbon‐derived compounds, which have different carbon chains and functional groups, with the treatment of concentrated sulfuric acid (H2SO4). Both electrical properties seem to be in conformity throughout these measurements, with the longer main carbon chain compounds giving higher capacitance and lower ESR values. Comparison between these electrolytes and the typically used aqueous solutions in supercapacitor research—1M H2SO4, 5M potassium hydroxide, and 5M sodium hydroxide—showed that the produced electrolytes give the highest capacitance value up to 30 times more than that of typical aqueous solutions. It is believed that with further treatment these hydrocarbon‐derived electrolytes can potentially be used in supercapacitors as better performing electrolytes than aqueous solutions and at a relatively low cost compared to organic solutions. IEEJ Trans 2011 DOI: 10.1002/tee.21802  相似文献   

13.
This paper studies the problem of exponential H model reduction for continuous‐time switched delay system under average dwell time (ADT) switching signals. Time delay under consideration is interval time varying. Our attention is focused on the construction of the desired reduced order models, which guarantee that the resulting error systems under ADT switching signals are exponentially stable with an H norm bound. By introducing a block matrix and making use of the ADT approach, delay‐dependent sufficient conditions for the existence of reduced order models are derived and formulated in terms of strict linear matrix inequalities (LMIs). Owing to the absence of non‐convex constraints, it is tractable to construct an admissible reduced order model. The effectiveness of the proposed methods is illustrated via two numerical examples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In this article, we propose a fast and efficient algorithm named the adaptive parallel Krylov‐metric projection algorithm. The proposed algorithm is derived from the variable‐metric adaptive projected subgradient method, which has recently been presented as a unified analytic tool for various adaptive filtering algorithms. The proposed algorithm features parallel projection—in a variable‐metric sense—onto multiple closed convex sets containing the optimal filter with high probability. The metric is designed based on (i) sparsification by means of a certain data‐dependent Krylov subspace and (ii) maximal use of the obtained sparse structure for fast convergence. The numerical examples show the advantages of the proposed algorithm over the existing ones in stationary/nonstationary environments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, a robust exponential l2 ? l filtering problem is addressed for discrete‐time switched systems with polytopic uncertainties. The purpose of robust exponential l2 ? l filtering is to design a filter such that the resulting filtering error system is robustly exponentially stable with a decay rate and a prescribed exponential l2 ? l performance index. The robust exponential l2 ? l filtering problem is solved via an average dwell time approach. Sufficient conditions in terms of strict LMI are derived for checking the robust exponential stability of a filter. An explicit expression for the desired robust exponential filter is also given. Finally, a numerical example is provided to demonstrate the potential and effectiveness of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This paper focuses on H filter design for continuous‐time singular systems with time‐varying delay. A delay‐dependent H performance analysis result is first established for error systems via a novel estimation method. By combining a well‐known inequality with a delay partition technique, the upper bound of the derivative of the Lyapunov functional is estimated more tightly and expressed as a convex combination with respect to the reciprocal of the delay rather than the delay. Based on the derived H performance analysis results, a regular and impulse‐free H filter is designed in terms of linear matrix inequalities (LMIs). A numerical example is given to demonstrate the merits of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
This paper studies distributed H2/H filtering problem with the aid of neighbors’ information. It is assumed that there are both bounded power uncertainty and stochastic white noise in the model of the considered system. A 2‐step design approach is proposed to calculate the observer gain and the coupling gain in the proposed observers. In order to reduce the computation load of solving coupled matrix equations, a simplified design procedure is also proposed. Simulation of 2 examples shows the effectiveness of the proposed filter design procedure.  相似文献   

18.
A new tunable current‐mode (CM) biquadratic filter with three inputs and three outputs using three dual‐output inverting second‐generation current conveyors, three grounded resistors and two grounded capacitors is proposed. The proposed circuit exhibits low‐input impedance and high‐output impedance which is important for easy cascading in the CM operations. It can realize lowpass, bandpass, highpass, bandreject and allpass biquadratic filtering responses from the same topology. The circuit permits orthogonal controllability of the quality factor Q and resonance angular frequency ωo, and no component matching conditions or inverting‐type input current signals are imposed. All the passive and active sensitivities are low. Hspice simulation results are based on using TSMC 0.18 µm 1P6M process complementary metal oxide semiconductor technology and supply voltages ±0.9 V to verify the theoretical analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper considers the problem of adaptive robust H state feedback control for linear uncertain systems with time‐varying delay. The uncertainties are assumed to be time varying, unknown, but bounded. A new adaptive robust H controller is presented, whose gains are updating automatically according to the online estimates of uncertain parameters. By combining an indirect adaptive control method and a linear matrix inequality method, sufficient conditions with less conservativeness than those of the corresponding controller with fixed gains are given to guarantee robust asymptotic stability and H performance of the closed‐loop systems. A numerical example and its simulation results are given to demonstrate the effectiveness and the benefits of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This paper is concerned with the problem of the fault detection (FD) filter design for discrete‐time switched linear systems with mode‐dependent average dwell‐time. The switching law is mode‐dependent and each subsystem has its own average dwell‐time. The FD filters are designed such that the augmented switched systems are asymptotically stable, and the residual signal generated by the filters achieves a weighted l2‐gain for some disturbances and guarantees an H ? performance for the fault. By the aid of multiple Lyapunov functions combined with projection lemma, sufficient conditions for the design of the FD filters are formulated by linear matrix inequalities, furthermore, the filters gains are characterized in terms of the solution of a convex optimization problem. Finally, an application to boost convertor is given to illustrate the effectiveness and the applicability of the proposed design method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号