首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a high resolution molecular jet (MoJet) printing technique for vacuum deposition of evaporated thin films and apply it to fabrication of 30 μm pixelated (800 ppi) molecular organic light emitting devices (OLEDs) based on aluminum tris(8‐hydroxyquinoline) (Alq3) and fabrication of narrow channel (15 μm) organic field effect transistors (OFETs) with pentacene channel and silver contacts. Patterned printing of both organic and metal films is demonstrated, with the operating properties of MoJet‐printed OLEDs and OFETs shown to be comparable to the performance of devices fabricated by conventional evaporative deposition through a metal stencil. We show that the MoJet printing technique is reconfigurable for digital fabrication of arbitrary patterns with multiple material sets and high print accuracy (of better than 5 μm), and scalable to fabrication on large area substrates. Analogous to the concept of “drop‐on‐demand” in Inkjet printing technology, MoJet printing is a “flux‐on‐demand” process and we show it capable of fabricating multi‐layer stacked film structures, as needed for engineered organic devices.  相似文献   

2.
Fabrication of organic field‐effect transistors (OFETs) using a high‐throughput printing process has garnered tremendous interest for realizing low‐cost and large‐area flexible electronic devices. Printing of organic semiconductors for active layer of transistor is one of the most critical steps for achieving this goal. The charge carrier transport behavior in this layer, dictated by the crystalline microstructure and molecular orientations of the organic semiconductor, determines the transistor performance. Here, it is demonstrated that an inkjet‐printed single‐droplet of a semiconducting/insulating polymer blend holds substantial promise as a means for implementing direct‐write fabrication of organic transistors. Control of the solubility of the semiconducting component in a blend solution can yield an inkjet‐printed single‐droplet blend film characterized by a semiconductor nanowire network embedded in an insulating polymer matrix. The inkjet‐printed blend films having this unique structure provide effective pathways for charge carrier transport through semiconductor nanowires, as well as significantly improve the on‐off current ratio and the environmental stability of the printed transistors.  相似文献   

3.
Printing organic semiconductor inks by means of roll‐to‐roll compatible techniques will allow a continuous, high‐volume fabrication of large‐area flexible optoelectronic devices. The gravure printing technique is set to become a widespread process for the high throughput fabrication of functional layers. The gravure printing process of a poly‐phenylvinylene derivative light‐emitting polymer dissolved in a two solvent mixture on poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is studied. The surface tensions, contact angles, viscosities, and drying times of the formulations are investigated as a function of the solvent volume fraction and polymer concentration. The properties of the ink grant a homogeneous printed layer, suitable for device fabrication, when the calculated film leveling time is shorter than a critical time, at which the film has been frozen due to loss of solvent via evaporation. The knowledge obtained from the printing process is applied to fabricate organic light‐emitting diodes (OLEDs) on flexible substrates, yielding a luminance of ≈5000 cd m?2.  相似文献   

4.
《Organic Electronics》2007,8(4):389-395
Within the past years there has been much effort in developing and improving new techniques for the processing of advanced functional materials used in promising applications like micro-optics or organic electronics. Much attention has been paid to solution-based techniques, which enable low-cost processing and new possible developments like flexible displays or inkjet printed electronics. An alternative approach to inkjet printing is soft-lithography, which is a collective term for a number of non-photolithographic techniques and has become an important tool for the micron-sized structuring of materials.Here we report on the use of micromolding in capillaries (MIMIC) and microtransfer printing (μTP) as two soft-lithographic techniques for the fabrication of silver source/drain electrodes in well-performing bottom-gate/bottom-contact organic field-effect transistors (OFETs) with poly(3-hexylthiophene) as active layer material.While MIMIC combines solution-processability with high lateral resolution for highly accurate patterns, μTP is the miniaturized counterpart to conventional letterpress printing.The performance of the OFETs fabricated with these techniques is similar to devices based on conventional gold source/drain electrodes with well-defined source-to-drain current saturation and a linear behavior at low drain voltages suggesting a low contact resistance and hence good carrier injection from the silver electrodes into the organic semiconductor.  相似文献   

5.
Solution‐processibility is one of the distinguished traits of organic light‐emitting diodes (OLEDs) compared to existing solid‐state LED technologies. It allows new opportunities which can simplify the fabrication and potentially reduce the cost of manufacturing process. Emission area patterning is one of the crucial fabrication steps and it usually involves subtractive methods, such as photolithography or etching. Here, printing techniques are used to pattern the emission area of blade‐coated OLED layers. The print qualities of a number of printing schemes are characterized and compared. Spray coating and screen printing are used to deposit dielectrics with desired patterns on the OLED layers. At luminance of 1000 cd m−2 the OLEDs patterned using spray‐coated and screen‐printed dielectric show current density of 8.2 and 10.1 mA cm−2, external quantum efficiency (EQE) of 2.1% and 2.1%, and luminous efficacy of 5.5 and 6.3 lm W−1, respectively. The OLED characteristics and features of each printing scheme in depositing the dielectric layer are discussed. The printing methods are further applied to demonstrate displays with complex shapes and a seven‐segment display.  相似文献   

6.
Charge carrier transport in organic electronic devices is influenced by the crystalline microstructure and morphology of the organic semiconductor film. Evaporation behavior during drying plays a vital role in controlling the film morphology and the distribution of solute in inkjet‐printed films. On p. 229, Kilwon Cho and co‐workers demonstrate the influence of the evaporation‐induced flow in a single droplet on the crystalline microstructure and film morphology of inkjet‐printed 6,13‐bis((triisopropylsilylethynyl) pentacene. The results provide an excellent method for direct‐write fabrication of high‐performance organic electronics. We have demonstrated the influence of evaporation‐induced flow in a single droplet on the crystalline microstructure and film morphology of an ink‐jet‐printed organic semiconductor, 6,13‐bis((triisopropylsilylethynyl) pentacene (TIPS_PEN), by varying the composition of the solvent mixture. The ringlike deposits induced by outward convective flow in the droplets have a randomly oriented crystalline structure. The addition of dichlorobenzene as an evaporation control agent results in a homogeneous film morphology due to slow evaporation, but the molecular orientation of the film is undesirable in that it is similar to that of the ring‐deposited films. However, self‐aligned TIPS_PEN crystals with highly ordered crystalline structures were successfully produced when dodecane was added. Dodecane has a high boiling point and a low surface tension, and its addition to the solvent results in a recirculation flow in the droplets that is induced by a Marangoni flow (surface‐tension‐driven flow), which arises during the drying processes in the direction opposite to the convective flow. The field‐effect transistors fabricated with these self‐aligned crystals via ink‐jet printing exhibit significantly improved performance with an average effective field‐effect mobility of 0.12 cm2 V–1 s–1. These results demonstrate that with the choice of appropriate solvent ink‐jet printing is an excellent method for the production of organic semiconductor films with uniform morphology and desired molecular orientation for the direct‐write fabrication of high‐performance organic electronics.  相似文献   

7.
The field of organic electronics has seen tremendous progress over the last years and all‐solution‐based processes are believed to be one of the key routes to ultra low‐cost roll‐to‐roll device and circuit fabrication. In this regard a variety of functional materials has been successfully designed for inkjet printing. While orthogonal‐solvent approaches have frequently been used to tackle the solubility issue in multilayer solution processing, the focus of this work lies on printed metal electrodes for organic field‐effect transistors (OFET) and their curing concepts. Two metallic inkjet‐printable materials are studied: i) a silver‐copper nanoparticle based dispersion and ii) a soluble organic silver‐precursor. Photoelectron spectroscopy reveals largely metallic properties of the cured materials, which are compared with respect to OFET performance and process‐related issues. Contact resistance of the prepared metal electrodes is significantly larger than that of evaporated top‐contact gold electrodes. As direct patterning via inkjet printing limits the reliably achievable channel length to values well above 10 μm, the influence of contact resistance is rather small, however, and overall device performance is comparable.  相似文献   

8.
The field of organic electronics has been developed vastly in the past two decades due to its promise for low cost, lightweight, mechanical flexibility, versatility of chemical design and synthesis, and ease of processing. The performance and lifetime of these devices, such as organic light‐emitting diodes (OLEDs), photovoltaics (OPVs), and field‐effect transistors (OFETs), are critically dependent on the properties of both active materials and their interfaces. Interfacial properties can be controlled ranging from simple wettability or adhesion between different materials to direct modifications of the electronic structure of the materials. In this Feature Article, the strategies of utilizing surfactant‐modified cathodes, hole‐transporting buffer layers, and self‐assembled monolayer (SAM)‐modified anodes are highlighted. In addition to enabling the production of high‐efficiency OLEDs, control of interfaces in both conventional and inverted polymer solar cells is shown to enhance their efficiency and stability; and the tailoring of source–drain electrode–semiconductor interfaces, dielectric–semiconductor interfaces, and ultrathin dielectrics is shown to allow for high‐performance OFETs.  相似文献   

9.
Highly conductive polymer, polypyrrole (PPy) was successfully patterned as source and drain (S/D) electrodes for flexible pentacene thin film transistors in top-contact structure by combining inkjet printing and vapor deposition polymerization. Facile inkjet printing of initiator and subsequent exposure of pyrrole monomers resulted in selective absorption and polymerization of pyrrole monomers on the patterned initiator region. Pentacene transistors based on printed PPy electrodes exhibited higher electrical characteristics than that of the devices with thermally evaporated Au electrodes. Improved performance of the devices based on PPy electrodes could be attributed to the reduction of contact resistance at the interface between polymer and organic semiconductor. For the replacement of metal electrodes, vapor deposition polymerization assisted inkjet printing technique can provide a versatile method to utilize highly conductive polymer as a functional electrode of flexible organic electronic devices.  相似文献   

10.
The first full‐color polymer organic light‐emitting diode (OLED) display is reported, fabricated by a direct photolithography process, that is, a process that allows direct structuring of the electroluminescent layer of the OLED by exposure to UV light. The required photosensitivity is introduced by attaching oxetane side groups to the backbone of red‐, green‐, and blue‐light‐emitting polymers. This allows for the use of photolithography to selectively crosslink thin films of these polymers. Hence the solution‐based process requires neither an additional etching step, as is the case for conventional photoresist lithography, nor does it rely on the use of prestructured substrates, which are required if ink‐jet printing is used to pixilate the emissive layer. The process allows for low‐cost display fabrication without sacrificing resolution: Structures with features in the range of 2 μm are obtained by patterning the emitting polymers via UV illumination through an ultrafine shadow mask. Compared to state‐of‐the‐art fluorescent OLEDs, the display prototype (pixel size 200 μm × 600 μm) presented here shows very good efficiency as well as good color saturation for all three colors. The application in solid‐state lighting is also possible: Pure white light [Commision Internationale de l'Éclairage (CIE) values of 0.33, 0.33 and color rendering index (CRI) of 76] is obtained at an efficiency of 5 cd A–1 by mixing the three colors in the appropriate ratio. For further enhancement of the device efficiency, an additional hole‐transport layer (HTL), which is also photo‐crosslinkable and therefore suitable to fabricate multilayer devices from solution, is embedded between the anode and the electroluminescent layer.  相似文献   

11.
Switching and control of efficient red, green, and blue active matrix organic light‐emitting devices (AMOLEDs) by printed organic thin‐film electrochemical transistors (OETs) are demonstrated. These all‐organic pixels are characterized by high luminance at low operating voltages and by extremely small transistor dimensions with respect to the OLED active area. A maximum brightness of ≈900 cd m?2 is achieved at diode supply voltages near 4 V and pixel selector (gate) voltages below 1 V. The ratio of OLED to OET area is greater than 100:1 and the pixels may be switched at rates up to 100 Hz. Essential to this demonstration are the use of a high capacitance electrolyte as the gate dielectric layer in the OETs, which affords extremely large transistor transconductances, and novel graded emissive layer (G‐EML) OLED architectures that exhibit low turn‐on voltages and high luminescence efficiency. Collectively, these results suggest that printed OETs, combined with efficient, low voltage OLEDs, could be employed in the fabrication of flexible full‐color AMOLED displays.  相似文献   

12.
Organic electronics is an emerging technology that enables the fabrication of devices with low-cost and simple solution-based processes at room temperature. In particular, it is an ideal candidate for the Internet of Things since devices can be easily integrated in everyday objects, potentially creating a distributed network of wireless communicating electronics. Recent efforts allowed to boost operational frequency of organic field-effect transistors (OFETs), required to achieve efficient wireless communication. However, in the majority of cases, in order to increase the dynamic performances of OFETs, masks based lithographic techniques are used to reduce device critical dimensions, such as channel and overlap lengths. This study reports the successful integration of direct written metal contacts defining a 1.4 µm short channel, printed with ultra-precise deposition technique (UPD), in fully solution fabricated n-type OFETs. An average transition frequency as high as 25.5 MHz is achieved at 25 V. This result demonstrates the potential of additive, high-resolution direct-writing techniques for the fabrication of organic electronics operating in the high-frequency regime.  相似文献   

13.
The first high‐resolution full‐color OLED display based on a direct photolithographic process is presented by Meerholz and co‐workers on p. 191. The cover shows a schematic illustration of the fabrication process, a fluorescence microscope picture demonstrating the micrometer resolution capability of the process, and a picture of the first prototype displaying a test image. Electroluminescent polymers with photoresist‐like properties are the basis of the new process (chemical structure shown in the background). The first full‐color polymer organic light‐emitting diode (OLED) display is reported, fabricated by a direct photolithography process, that is, a process that allows direct structuring of the electroluminescent layer of the OLED by exposure to UV light. The required photosensitivity is introduced by attaching oxetane side groups to the backbone of red‐, green‐, and blue‐light‐emitting polymers. This allows for the use of photolithography to selectively crosslink thin films of these polymers. Hence the solution‐based process requires neither an additional etching step, as is the case for conventional photoresist lithography, nor does it rely on the use of prestructured substrates, which are required if ink‐jet printing is used to pixilate the emissive layer. The process allows for low‐cost display fabrication without sacrificing resolution: Structures with features in the range of 2 μm are obtained by patterning the emitting polymers via UV illumination through an ultrafine shadow mask. Compared to state‐of‐the‐art fluorescent OLEDs, the display prototype (pixel size 200 μm × 600 μm) presented here shows very good efficiency as well as good color saturation for all three colors. The application in solid‐state lighting is also possible: Pure white light [Commision Internationale de l'Éclairage (CIE) values of 0.33, 0.33 and color rendering index (CRI) of 76] is obtained at an efficiency of 5 cd A–1 by mixing the three colors in the appropriate ratio. For further enhancement of the device efficiency, an additional hole‐transport layer (HTL), which is also photo‐crosslinkable and therefore suitable to fabricate multilayer devices from solution, is embedded between the anode and the electroluminescent layer.  相似文献   

14.
A graphite thin film was investigated as the drain and source electrodes for bottom‐contact organic field‐effect transistors (BC OFETs). Highly conducting electrodes (102 S cm?1) at room temperature were obtained from pyrolyzed poly(l,3,4‐oxadiazole) (PPOD) thin films that were prepatterned with a low‐cost inkjet printing method. Compared to the devices with traditional Au electrodes, the BC OFETs showed rather high performances when using these source/drain electrodes without any further modification. Being based on a graphite‐like material these electrodes possess excellent compatibility and proper energy matching with both p‐ and n‐type organic semiconductors, which results in an improved electrode/organic‐layer contact and homogeneous morphology of the organic semiconductors in the conducting channel, and finally a significant reduction of the contact resistance and enhancement of the charge‐carrier mobility of the devices is displayed. This work demonstrates that with the advantages of low‐cost, high‐performance, and printability, PPOD could serve as an excellent electrode material for BC OFETs.  相似文献   

15.
We report on our latest improvements in organic field‐effect transistors (OFETs) using ultra‐thin anodized gate insulators. Anodization of titanium (Ti) is an extremely cheap and simple technique to obtain high‐quality, very thin (~ 7.5 nm), pinhole‐free, and robust gate insulators for OFETs. The anodized insulators have been tested in transistors using pentacene and poly(triarylamine) (PTAA) as active layers. The fabricated devices display low‐threshold, normally “off” OFETs with negligible hysteresis, good carrier mobility, high gate capacitance, and exceptionally low inverse subthreshold slope. Device performance is improved via chemical modification of TiO2 with an octadecyltrichlorosilane (OTS) self‐assembled monolayer (SAM). As the result of this combination of favorable properties, we have demonstrated OFETs that can be operated with voltages well below 1 V.  相似文献   

16.
The transfer of benchtop knowledge into large scale industrial production processes represents a challenge in the field of organic electronics. Large scale industrial production of organic electronics is envisioned as roll to roll (R2R) processing which nowadays comprises usually solution-based large area printing steps. The search for a fast and reliable fabrication process able to accommodate the deposition of both insulator and semiconductor layers in a single step is still under way. Here we report on the fabrication of organic field effect transistors comprising only evaporable small molecules. Moreover, both the gate dielectric (melamine) and the semiconductor (C60) are deposited in successive steps without breaking the vacuum in the evaporation chamber. The material characteristics of evaporated melamine thin films as well as their dielectric properties are investigated, suggesting the applicability of vacuum processed melamine for gate dielectric layer in OFETs. The transistor fabrication and its transfer and output characteristics are presented along with observations that lead to the fabrication of stable and virtually hysteresis-free transistors. The extremely low price of precursor materials and the ease of fabrication recommend the evaporation processes as alternative methods for a large scale, R2R production of organic field effect transistors.  相似文献   

17.
Solution‐processable functionalized acenes have received special attention as promising organic semiconductors in recent years because of their superior intermolecular interactions and solution‐processability, and provide useful benchmarks for organic field‐effect transistors (OFETs). Charge‐carrier transport in organic semiconductor thin films is governed by their morphologies and molecular orientation, so self‐assembly of these functionalized acenes during solution processing is an important challenge. This article discusses the charge‐carrier transport characteristics of solution‐processed functionalized acene transistors and, in particular, focuses on the fine control of the films' morphologies and structural evolution during film‐deposition processes such as inkjet printing and post‐deposition annealing. We discuss strategies for controlling morphologies and crystalline microstructure of soluble acenes with a view to fabricating high‐performance OFETs.  相似文献   

18.
The high‐precision deposition of highly crystalline organic semiconductors by inkjet printing is important for the production of printed organic transistors. Herein, a facile nonconventional lithographic patterning technique is developed for fabricating banks with microwell structures by inkjet printing solvent droplets onto a polymer layer, thereby locally dissolving the polymer to form microwells. The semiconductor ink is then inkjet‐printed into the microwells. In addition to confining the inkjet‐printed organic semiconductor droplets, the microwells provide a platform onto which organic semiconductor molecules crystallize during solvent evaporation. When printed onto the hydrophilic microwells, the inkjet‐printed 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS_PEN) molecules undergo self‐organization to form highly ordered crystalline structures as a result of contact line pinning at the top corner of the bank and the outward hydrodynamic flow within the drying droplet. By contrast, small crystallites form with relatively poor molecular ordering in the hydrophobic microwells as a result of depinning of the contact line along the walls of the microwells. Because pinning in the hydrophilic microwells occurred at the top corner of the bank, treating the surfaces of the dielectric layer with a hydrophobic organic layer does not disturb the formation of the highly ordered TIPS_PEN crystals. Transistors fabricated on the hydrophilic microwells and the hydrophobic dielectric layer exhibit the best electrical properties, which is explained by the solvent evaporation and crystallization characteristics of the organic semiconductor droplets in the microwell. These results indicate that this technique is suitable for patterning organic semiconductor deposits on large‐area flexible substrates for the direct‐write fabrication of high‐performance organic transistors.  相似文献   

19.
Polyimide (PI) materials are lightweight, flexible, resistant strongly to heat and chemicals, and have been widely used in electronics industry such as working as electronic packaging materials in large-scale integrated circuits. In this letter, PI materials, for the first time, are introduced into organic field-effect transistors (OFETs) and circuits as insulator layers in order to be compatible with the photolithography process. Moreover, a novel method is developed to make the PI films strong enough to endure the critical processes of photolithography (e.g., the influence of developer on polyimide layer). Based on the intact PI insulator and the modified photolithographic technique, large scale, flexible transistor arrays and circuits were fabricated with high resolution and high performance (mobility up to 0.55 cm2 V−1 s−1 for bottom-contact bottom-gate OFETs). It provides a new way for the fabrication of large-area organic devices and circuits beyond solution printed techniques, especially for the application of organic semiconductors with poor solubility, e.g., pentacene.  相似文献   

20.
The fabrication of functional multilayered conjugated‐polymer structures with well‐defined organic‐organic interfaces for optoelectronic‐device applications is constrained by the common solubility of many polymers in most organic solvents. Here, we report a simple, low‐cost, large‐area transfer‐printing technique for the deposition and patterning of conjugated‐polymer thin films. This method utilises a planar poly(dimethylsiloxane) (PDMS) stamp, along with a water‐soluble sacrificial layer, to pick up an organic thin film (~20 nm to 1 µm) from a substrate and subsequently deliver this film to a target substrate. We demonstrate the versatility of this transfer‐printing technique and its applicability to optoelectronic devices by fabricating bilayer structures of poly(9,9‐di‐n‐octylfluorene‐alt‐(1,4‐phenylene‐((4‐sec‐butylphenyl)imino)‐1,4‐phenylene))/poly(9,9‐di‐n‐octylfluorene‐alt‐benzothiadiazole) (TFB/F8BT) and poly(3‐hexylthiophene)/methanofullerene([6,6]‐phenyl C61 butyric acid methyl ester) (P3HT/PCBM), and incorporating them into light‐emitting diodes (LEDs) and photovoltaic (PV) cells, respectively. For both types of device, bilayer devices fabricated with this transfer‐printing technique show equal, if not superior, performance to either blend devices or bilayer devices fabricated by other techniques. This indicates well‐controlled organic‐organic interfaces achieved by the transfer‐printing technique. Furthermore, this transfer‐printing technique allows us to study the nature of the excited states and the transport of charge carriers across well‐defined organic interfaces, which are of great importance to organic electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号