首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal stability of the heterogeneous nucleation effect of polypropylene (PP) nucleated with an organic phosphate (A) and two kinds of sorbitol derivatives (B and D) was investigated by DSC multiscanning. For pure PP, the peak temperature of crystallization (T) was little changed with an increasing number of DSC scans, indicating that nucleation of PP is thermally stable. For the PP nucleated with an organic phosphate (PPA), the temperatures at the onset of crystallization (T) and at the completion of crystallization (T); the peak temperature of crystallization (T) and melting (T); and the heat of crystallization (ΔHc) and fusion (ΔHm) of PP are higher than those of pure PP and were little influenced with an increasing number of DSC scans. For PP nucleated with the sorbitol derivatives (PPB and PPD), the T, T, T, and T decreased with an increasing the number of scans. These results indicated that the thermal stability of heterogeneous nucleation effect of the nucleating agent A is higher than that of nucleating agents B and D. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1643–1650, 2002  相似文献   

2.
Poly(3‐methylthiophene) (P3‐MeT) doped with different anions were prepared electrochemically in the presence of tetraalkylammonium salts. The new poly(3‐methylthiophene) SnCl and SbCl (P3‐MeT SnCl5 and P3‐MeT SbCl6) were prepared electrochemically using tetra‐n‐butylammonium pentachlorostannate and tetra‐n‐butylammonium hexachloroantimonate as the supporting electrolytes. The effect of current density, salt concentration, reaction temperature, and the nature of solvents on the polymer yield and polymer conductivities have been investigated. Cyclic voltammetry of poly(3‐methylthiophene) has been examined at platinum electrode in 1,2‐dichloroethane medium containing n‐Bu4NSnCl5, Bu4NSbCl6, and Bu4NClO4 as the supporting electrolytes in the range of −1.0 to 1.7 V versus SCE in the presence and absence of 3‐methylthiophene. Electrical conductivity, magnetic susceptibility measurements, and structural determination by elemental analysis and infrared studies were also made. Scanning electron microscopy revealed a globular, branched, fibrous and a spongy, fibrous morphology of poly(3‐methylthiophene) SnCl, ClO, and SbCl, respectively. The thermal analysis of the polymers was also investigated. Possible causes for the observed lower conductivity of these polymers have also been discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 91–102, 1999  相似文献   

3.
The self-step growth polymerization of RAf monomers in homogeneous, continuous flow stirred tank reactors (HCSTRs) is simulated under conditions of periodic feed concentration (with frequency ω and amplitude α). By having periodic operation, the polydispersity index of the polymer is found to increase by about 35% over the values at steady state. Periodic operation of HCSTRs is found to lead to gelation only for certain values of the frequency and the dimensionless residence time τ*. Gelling envelopes have been obtained to give conditions under which HCSTRs should be operated. These envelopes can be described in terms of two critical dimensionless residence times, τ and τ such that nongelling operation is always ensured when τ* < τ. For τ* > τ, periodic operation always leads to gelation, and HCSTRs cannot be used. For τ < τ* < τ, the gelling behavior is found to depend on the functionality f, amplitude α, and the dimensionless residence time τ*.  相似文献   

4.
It was determined that the thermal stability of poly(4‐methyl‐1‐pentene) (P4MP) was maintained up to 424°C in an inert atmosphere by thermogravimetric analysis. The retention diagrams of ethyl acetate, tert‐butyl acetate, and benzene on P4MP were plotted at temperatures between 30 and 280°C by inverse gas chromatography (IGC) technique. Melting temperature of the polymer was determined as 230 and 239.5°C by IGC and differential scanning calorimetry (DSC), respectively. The percent crystallinity of P4MP was obtained from the retention diagrams at temperatures below melting point. The percent crystallinity obtained by IGC is in good agreement with the ones obtained by DSC. Then, specific retention volume, V, weight fraction activity coefficient, Ω, Flory‐Huggins polymer‐solvent interaction parameter, χ, equation‐of‐state polymer‐solvent interaction parameter, χ, and effective exchange energy parameter, Xeff of octane, nonane, decane, undecane, dodecane, tridecane, n‐butyl acetate, isobutyl acetate, isoamyl acetate with P4MP, were determined between 240 and 280°C by IGC. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Different values are reported in the literature for the intrinsic birefringence of the crystalline (Δn) and the amorphous (Δn) phases in nylon 6. Mostly, these values have either been determined by extrapolation (and then it is assumed that Δn = Δn) or calculated theoretically. In this study, intrinsic birefringence values Δn and Δn for nylon 6 were determined using the Samuels two-phase model which correlates sonic modulus with structural parameters. Three series of fiber samples were used: (1) isotropic samples of different degrees of crystallinity for estimation of E and E moduli at two temperatures. The following modulus values were obtained: 1.62 × 109 and 6.66 × 109 N/m2 for 28.5°C, and 1.81 × 109 and 6.71 × 109 N/m2 for ?20°C; (2) anisotropic, amorphous fiber samples for estimation of Δn = 0.076 and E = 1.63 × 109 N/m2 at 28.5°C; (3) semicrystalline samples of various draw ratios for estimations of Δn = 0.089 and Δn = 0.078. All measurements were carried out with carefully dried samples to avoid erroneous results caused by moisture.  相似文献   

6.
Vinyl chloride–diallyl phthalate (VC–DAP) suspension copolymerization was carried out in a 5‐L autoclave and 200‐mL stainless steel vessel at 45°C. The apparent reactivity ratios of VC–DAP suspension copolymerization system were calculated as rVC = 0.77 and rDAP = 0.37. It shows that VC–DAP copolymer contains no gel when the feed concentration of DAP (f) is lower than a critical concentration (fcr, inside the range of 0.466–0.493 mmol/mol VC at 80–85% conversion), the polymerization degree (DP) of copolymer increases with the increase of f and conversion. VC–DAP copolymer is composed of gel and sol fractions when f is larger than fcr. The DP of sol fraction decreases as f increases, but the gel content and the crosslinking density of gel increase. The gel content also increases as conversion increases. The results also show that the index of polydispersity of molecular weight of sol changes with f, a maximum value appears when f is close to fcr. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 156–162, 2000  相似文献   

7.
Poly(3‐mesityl‐2‐hydroxypropyl methacrylate) (PMHPMA) was synthesized in a 1,4‐dioxane solution with 2,2′‐azobisisobutyronitrile as the initiator at 60°C. The homopolymer and its monomer were characterized with 1H‐ and 13C‐NMR, Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, size exclusion chromatography, and elemental analysis techniques. According to size exclusion chromatography analysis, the number‐average molecular weight, weight‐average molecular weight, and polydispersity index of PMHPMA were 65,864 g/mol, 215,375 g/mol, and 3.275, respectively. According to thermogravimetric analysis, the carbonaceous residue value of PMHPMA was 14% at 500°C. The values of the specific retention volume, adsorption enthalpy, sorption enthalpy, sorption free energy, sorption entropy, partial molar free energy, partial molar heat of mixing, weight fraction activity coefficient of solute probes at infinite dilution (Ω), and Flory–Huggins interaction parameter (χ) were calculated for the interactions of PMHPMA with selected alcohols and alkanes by the inverse gas chromatography method at various temperatures. According to Ω and χ, selected alcohols and alkanes were nonsolvents for PMHPMA at 423–453 K. Also, the solubility parameter of PMHPMA (δ2) was found to be 24.24 and 26.33 (J/cm3)0.5 from the slope and intercept of (δ/RT) ? χ/V1 = (2δ2/RT1 ? δ/RT at 443 K, respectively [where δ1 is the solubility parameter of the probe, V1 is the molar volume of the solute, T is the column temperature (K), and R is the universal gas constant]. The glass‐transition temperature of PMHPMA was found to be 386 and 385 K by inverse gas chromatography and differential scanning calorimetry techniques, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 101–109, 2006  相似文献   

8.
In this study, the melting behavior of isothermally crystallized polytri‐ methylene terephthalate (PTT) was investigated. Multiple melting behaviors in DSC heating trace were found because two populations of lamellar stacks were formed during primary crystallization and the recrystallization at heating process, respectively. This fact could be also confirmed from the result of optical microscopy observation. The Hoffman–Weeks equation was applied to obtain equilibrium melting temperature (T). The T value of PTT is about 525 K, which is 10 K higher than that reported. Combining the enthalpy of fusion from the DSC result and the degree of crystallinity from WAXD result, the value of the equilibrium‐melting enthalpy ΔH was deduced to be approximately 28.8 kJ mol?1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2426–2433, 2002  相似文献   

9.
10.
The isothermal crystallization behavior and melting characteristics of pure polypropylene (PP) and PPs nucleated with a phosphate nucleating agent (A) and a sorbitol derivative (D) have been studied by differential scanning calorimetry (DSC). Compared with pure PP, nucleated PPs show a shorter half‐times of crystallization. Dependence of crystallization rate of nucleated PP on the crystallization temperature is stronger than that of pure PP at the higher crystallization temperature, whereas the opposite results are obtained at the lower crystallization temperature. Addition of nucleating agent shifts the temperature at the deviation from the baseline of DSC melting curve, T, and the temperature at the completion of melting, T, to higher temperatures, indicating that nucleated PPs exhibit a higher perfection of PP crystals. A shoulder peak in the high temperature range of melting peak of nucleated PP and a wider low temperature region in the melting peak of pure PP are observed. Obviously, PP and nucleated PPs form different distribution of crystal perfection in the isothermal crystallization process. According to the half‐time of crystallization, nucleating agent A is more effective than D. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2547–2553, 2000  相似文献   

11.
The atom‐transfer radical polymerization (ATRP) of methyl methacrylate (MMA), using α,α′‐dichloroxylene as initiator and CuCl/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as catalyst was successfully carried out under microwave irradiation (MI). The polymerization of MMA under MI showed linear first‐order rate plots, a linear increase of the number‐average molecular weight with conversion, and low polydispersities, which indicated that the ATRP of MMA was controlled. Using the same experimental conditions, the apparent rate constant (k) under MI (k = 7.6 × 10?4 s?1) was higher than that under conventional heating (k = 5.3 × 10?5 s?1). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2189–2195, 2004  相似文献   

12.
The Curie transition, even though the conformational change at the Curie transition primarily arises from intermolecular interaction, is highly dependent on the crystallization conditions. A slower cooling rate from the melt during paraelectric crystallization lowers Tc, increases the portion of Fβ at the expense of Fα reduction, and produces a more unstable ferroelectric phase. T is rarely dependent upon the amount of PMMA, but T is increased with the PMMA content. PMMA has a favorable action in forming a more stable ferroelectric phase in the P(VDF/TrFE)/PMMA blend and elevating the Curie transition point because of the all-trans sequence conformation of PMMA and a specific intermolecular interaction with P(VDF/TrFE) in the melt state. However, PMMA reduces the total amount of the crystalline phase, the electric response, and the piezoelectricity. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
The computed dependencies of elastic characteristics of branched-network polymers were obtained on the basis of the Takayanagi series model. The moduli ratio (λ) for branched-network and branched polymers increases as a result of an increase of the moduli ratio of network and branched phases (E/E) and the network phase fraction (Vnet). The λ-increase as a function of Vnet is larger than in the case of the E/E dependence. On the basis of computed dependencies, the experimental results for the radiation crosslinked SBS block copolymer were considered. The experimental results agree with the computed de-pendencies for the hetergeneous branched-network polymers with E/E ≈︁ 20. The influence of entanglements on the elastic characteristics of branched-network polymers is discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Dynamic adsorption behaviors between Cr(VI) ion and water‐insoluble amphoteric starches was investigated. It was found that the HCrO ion predominates over the initial pH ∼ 2–4, the CrO ion predominates over the initial pH ∼ 10–12, and both ions coexist over the initial pH ∼ 6–8. The sorption process occurs in two stages: the external mass transport process occurs in the early stage and the intraparticle diffusion process occurs in the long‐term stage. The diffusion coefficient of the early stage (D1) is larger than that of the long‐term stage (D2) for the initial pH 4 and pH 10. The diffusion rate of HCrO ion is faster than that of CrO ion for both processes. The D1 and D2 values are ∼ 1.38 × 10−7–10.1 × 10−7 and ∼ 0.41 × 10−7–1.60 × 10−7 cm2 s−1, respectively. The ion diffusion rate in both processes is concentration dependent and decreases with increasing initial concentration. The diffusion rate of HCrO ion is more concentration dependent than that of CrO ion for the external mass transport process. In the intraparticle diffusion process, the concentration dependence of the diffusion rate of HCrO and CrO ions is about the same. The external mass transport and intraparticle diffusion processes are endothermic and exothermic, respectively, for the initial pH 4 and pH 10. The kd values of the external mass transport and intraparticle diffusion processes are ∼ 15.20–30.45 and ∼ −3.53 to −12.67 kJ mol−1, respectively. The diffusion rate of HCrO ion is more temperature dependent than that of CrO ion for both processes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2409–2418, 1999  相似文献   

15.
The solution and diffusion properties of cyclohexane, cyclohexanol, and cyclohexanone in poly(ethylene glycol) (PEG) and crosslinked PEG have been studied in the temperature range of 368.15 to 403.15 K using inverse gas chromatography (IGC) technique. The infinite dilute activity coefficient (Ω) and diffusion coefficient (D) have been determined for the above solvent/polymer systems. Accordingly, several thermodynamic functions, the diffusion pre‐exponential factor, and activation energy have been attained. The results showed a decrease in Ω and an increase in D with rising temperature. The order of the relative magnitude of Ω and D of the solvents were explained by comparing their interactions with the polymer and their collision diameters, respectively. Moreover, Ω and D in crosslinked PEG were smaller than those in PEG at various temperatures. The analysis of Ω, the infinite dilute selectivity and capacity showed the possibility of using crosslinked PEG as an appropriate membrane material for the separation of cyclohexane, cyclohexanol, and cyclohexanone mixture. A thermodynamic study also implied that the solvent sorptions in the polymers were all enthalpically driven in the experimental range. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

16.
The effect of natural fibers (vetiver grass and rossells) on quiescent crystallization of polypropylene (PP) composites was analyzed in this study. Also, equilibrium melting temperature (T) of the composites was elucidated. Natural fiber‐PP composites showed lower T when compared to neat PP. Thermal analysis was performed via differential scanning calorimeter to study the crystallization kinetics. Natural fiber‐PP composites exhibited higher rate of crystallization than that of neat PP. Furthermore, spherulitic growth rate and transcrystallinity of the composites were investigated under a polarized light optical microscope. It was found that the growth rates of the composites were lower than that of neat PP. The spherulitic growth rates combined with the crystallization rates were used to calculate number of effective nuclei. It was shown that the number of effective nuclei of the composites was higher than that of neat PP. This suggested that natural fibers could act as a nucleating agent in the composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
A highly novel nano‐CaCO3 supported β‐nucleating agent was employed to prepare β‐nucleated isotactic polypropylene (iPP) blend with polyamide (PA) 66, β‐nucleated iPP/PA66 blend, as well as its compatibilized version with maleic anhydride grafted PP (PP‐g‐MA), maleic anhydride grafted polyethylene‐octene (POE‐g‐MA), and polyethylene‐vinyl acetate (EVA‐g‐MA), respectively. Nonisothermal crystallization behavior and melting characteristics of β‐nucleated iPP and its blends were investigated by differential scanning calorimeter and wide angle X‐ray diffraction. Experimental results indicated that the crystallization temperature (T) of PP shifts to high temperature in the non‐nucleated PP/PA66 blends because of the α‐nucleating effect of PA66. T of PP and the β‐crystal content (Kβ) in β‐nucleated iPP/PA66 blends not only depended on the PA66 content, but also on the compatibilizer type. Addition of PP‐g‐MA and POE‐g‐MA into β‐nucleated iPP/PA66 blends increased the β‐crystal content; however, EVA‐g‐MA is not benefit for the formation of β‐crystal in the compatibilized β‐nucleated iPP/PA66 blend. It can be relative to the different interfacial interactions between PP and compatibilizers. The nonisothermal crystallization kinetics of PP in the blends was evaluated by Mo's method. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Isothermal crystallization and subsequent melting behavior of two propylene/hexene‐1 copolymers and two propylene/octene‐1 copolymers prepared with metallocene catalyst were investigated. It is found that γ‐modification is predominant in all copolymers. The Avrami exponent shows a weak dependency on comonomer content and comonomer type. At higher crystallization temperatures (Tc) the crystallization rate constant changes more rapidly with Tc and the crystallization half‐time substantially increases. Double melting peaks were also observed at high Tc, which is attributed to the inhomogeneous distribution of comonomer units along the polymer chains and the existence of crystals with different lamellar thicknesses. The equilibrium melting temperatures (T) of the copolymers were obtained by Hoffman–Weeks extrapolation. It was found that the T decreases with increasing comonomer content, but are independent of comonomer type, implying that comonomer units are excluded from the crystal lattice. Dilation of the crystal lattice was also observed, which depends on crystallization, comonomer content, and comonomer type. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 240–247, 2005  相似文献   

19.
Poly(N‐vinyl 2‐pyrrolidone) (PVP)/acrylonitrile (AN) interpenetrating polymer networks (IPNs) were synthesized and amidoximated for the purpose of uranyl ion adsorption. The adsorption of amidoximated IPNs was studied from different uranyl ion solutions (850, 1000, 1200, 1400, and 1600 ppm). The result of all our adsorption studies showed that the bonding between UO‐amidoxime groups complied with the Langmuir‐type isotherm. The adsorption capacity was found as 0.75 g UO/g dry amidoximated IPN. In order to increase the UO ion adsorption capacity the amidoximated IPN was treated with alkali, but no significant increase could be observed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2324–2329, 2001  相似文献   

20.
Poly‐electrolyte N‐vinyl 2‐pyrrolidone‐g‐tartaric acid (PVP‐g‐TA) hydrogels with varying compositions were prepared in the form of rods from ternary mixtures of N‐vinyl 2‐pyrrolidone/tartaric acid/water. The effect of external stimuli, such as the solution pH, ionic strength, and temperature, on uranyl adsorption by these hydrogels was investigated. Uranyl adsorption capacities of the hydrogels were determined to be 53.2–72.2 (mg UO/g dry gel) at pH 1.8, and 35.3–60.7 (mg UO/g dry gel) at pH 3.8, depending on the amount of TA in the hydrogel. The adsorption studies have shown that the temperature and the ionic strength of the swelling solution also influence uranyl ion adsorption by PVP‐g‐TA hydrogels. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2219–2226, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号