首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sheet forming technology – processes, materials, simulation and verification Hydroforming and Deep Drawing represent leading technologies for forming sheet metal components. The Materials Branch of the University of Duisburg‐Essen works since more than 10 years in the field of Hydroforming and showed that Hydroforming increases the strength and that the weldings of hydroformed tubes normally exhibit a same (fatigue) strength as the base material. For an improvement of the economics of hydroforming spliced tubes were considered and standard hollow nodes for tubes nodes structures were developed and a proposal was made to produce these tubes in variable tools with segments or lamellas. A significant increase in economics of Hydroforming and of Deep Drawing of components is achieved by an introduction of the principles of an integral (cooperative) development of products. At the University of Duisburg‐Essen the following stages are run through: CAD (the Material Branch uses PRO/ENGINEER®), forming simulation – for that PAM‐STAMP® (ESI) and PATRAN MARC MENTAT® (MSC) are used – FEM strength calculation and EVICD for a consideration of variable service loading. Forming simulation needs as basic material data the yield curve, the parameters of anisotropy and the Forming Limit Curve (FLC). For a determination of the FLC in Deep Drawing Tests suitable Nakazima specimens were developed by applying the principles of cooperative product development. The specimens could then successfully be validated in Deep Drawing Tests, which were instrumented by the advanced 3D‐forming‐analysis‐system AUTOGRID inProcess (VIALUX). Various other forming simulations were also performed and some general rules for the performance of forming simulations were formulated. Finally, reverse engineering is briefly discussed.  相似文献   

2.
3.
Here, a pair of A1–D–A2–D–A1 unfused ring core‐based nonfullerene small molecule acceptors (NF‐SMAs), BO2FIDT‐4Cl and BT2FIDT‐4Cl is synthesized, which possess the same terminals (A1) and indacenodithiophene unit (D), coupling with different fluorinated electron‐deficient central unit (difluorobenzoxadiazole or difluorobenzothiadiazole) (A2). BT2FIDT‐4Cl exhibits a slightly smaller optical bandgap of 1.56 eV, upshifted highest occupied molecular orbital energy levels, much higher electron mobility, and slightly enhanced molecular packing order in neat thin films than that of BO2FIDT‐4Cl . The polymer solar cells (PSCs) based on BT2FIDT‐4Cl:PM7 yield the best power conversion efficiency (PCE) of 12.5% with a Voc of 0.97 V, which is higher than that of BO2FIDT‐4Cl ‐based devices (PCE of 10.4%). The results demonstrate that the subtle modification of A2 unit would result in lower trap‐assisted recombination, more favorable morphology features, and more balanced electron and hole mobility in the PM7:BT2FIDT‐4Cl blend films. It is worth mentioning that the PCE of 12.5% is the highest value in nonfused ring NF‐SMA‐based binary PSCs with high Voc over 0.90 V. These results suggest that appropriate modulation of the quinoid electron‐deficient central unit is an effective approach to construct highly efficient unfused ring NF‐SMAs to boost PCE and Voc simultaneously.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
Easy to clean surfaces – special applications Easy to clean surfaces can be made by wet‐chemical coating with subsequent heat‐treatment. Organically modified metal oxide films form the base reinforced by nano composite structures. The hydro‐ and oleophobic effect is obtained by perfluorinated organic molecule chains in the nano composite sol‐gel coatings. Application specific materials can be synthesized by the proper choice of suitable starting compounds and process parameters. The resulting coatings consist of a three‐dimensional cross‐linked inorganic part (such as a silica network) combined with an organic part. The organic material acts either as a surface modifier (example: alkyl, phenyl) or as crosslinker (example: acrylic, epoxy). The properties of such coating systems can be adjusted to obtain a wide range of glass‐ceramic or polymer‐like properties. The incorporation of nanoparticles into these materials significantly enhances the abrasion and the scratch resistance. Such coatings mainly on metal parts are used in diagnostics, analytical chemistry and medical technology.  相似文献   

12.
SiNx-submicrometer coatings – Optimization of the film properties – The influence of the deposition conditions on the properties of SiNx-coatings was investigated. The characterized SiNx-coatings were deposited by the help of reactive magnetron sputtering. Gas pressure and film thickness were varied. Scanning electron microscopic views of the cross sections show a columnar structure varying with the deposition parameters. The different structures are comparable to the known structure zone models. There is a transition from dense structures to open columnar structures with increasing gas pressure. The Microstructure of coatings also changes with increasing film thickness. Especially deposition conditions promoting shadowing effects lead to a large growth of the column diameter with increasing thickness. The intrinsic stresses and the ultramicrohardness of the coatings change with changing gas pressure, too. Dense structures have high intrinsic stresses and a high hardness while coarse columnar structures have low intrinsic stresses and a low hardness. The influence of the deposition parameters on wear behaviour and adhesion of the SiNx-coatings was investigated by cavitation tests. Dense coatings with high intrinsic stresses show adhesion failures, and coatings with lower stresses and coarse columnar structures fail because of their lower intrinsic stability. Thus, there is an optimum gas pressure, at which the best properties are reached. It can be shown that with decreasing film thickness adhesion increases.  相似文献   

13.
《Strain》2010,46(6):599-600
  相似文献   

14.
《Strain》2009,45(6):553-553
  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号