首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Composition‐tunable ZnxCd1–xS alloyed nanocrystals have been synthesized by a new approach consisting of thermolyzing a mixture of cadmium ethylxanthate (Cd(exan)2) and zinc ethylxanthate (Zn(exan)2) precursors in hot, coordinating solvents at relatively low temperatures (180–210 °C). The composition of the alloyed nanocrystals was accurately adjusted by controlling the molar ratio of Cd(exan)2 to Zn(exan)2 in the mixed reactants. The alloyed ZnxCd1–xS nanocrystals prepared in HDA/TOP (HDA: hexadecylamine; TOP: trioctylphosphine) solution exhibit composition‐dependent shape and phase structures as well as composition‐dependent optical properties. The shape of the ZnxCd1–xS nanocrystals changed from dot to single‐armed rod then to multi‐armed rod with a decrease of Zn content in the ternary nanoparticles. The alloying nature of the ZnxCd1–xS nanocrystals was consistently confirmed by the results of high‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), and UV‐vis absorption and photoluminescence (PL) spectroscopy. Further, the shape‐controlled synthesis of the ternary alloyed nanocrystals was realized by selecting appropriate solvents. Uniform nanodots in the whole composition range were obtained from TOPO/TOP solution, (TOPO: trioctylphosphine oxide) and uniform nanorods in the whole composition range were prepared from HDA/OA solution (OA: octylamine). The effect of the reaction conditions, such as solvent, reaction temperature, and reaction time, on the PL spectra of the alloyed ZnxCd1–xS nanocrystals was also systematically studied, and the reaction conditions were optimized for improving the PL properties of the nanocrystals.  相似文献   

2.
p‐Type conduction in amorphous oxide was firstly found in zinc rhodium oxide (ZnO·Rh2O3) (Adv. Mater. 2003 , 15, 1409), and it is still the only p‐type amorphous oxide to date. It was reported that an ordered structure at the nanometer scale was contained and its electronic structure is not clear yet. In this paper, optoelectronic and structural properties are reported in detail for xZnO·Rh2O3 thin films (x = 0.5–2.0) in relation to the chemical composition x. All the films exhibit positive Seebeck coefficients, confirming p‐type conduction. Local network structure strongly depends on the chemical composition. Transmission electron microscopic observations reveal that lattice‐like structures made of edge‐sharing RhO6 network exist in 2–3 nm sized grains for rhodium‐rich films (x = 0.5 and 1.0), while the zinc‐rich film (x = 2) is completely amorphous. This result indicates that excess Zn assists to form an amorphous network in the ZnO–Rh2O3 system since Zn ions tend to form corner‐sharing networks. The electronic structure of an all‐amorphous oxide p‐ZnO·Rh2O3/n‐InGaZnO4 junction is discussed with reference to electrical characteristics and results of photoelectron emission measurements, suggesting that the p/n junction has large band offsets at the conduction and valence bands, respectively.  相似文献   

3.
A novel finger‐sensing nanocomposite with remarkable and reversible piezoresistivity is successfully fabricated by dispersing homogeneously conductive graphite nanosheets (GNs) in a silicone rubber (SR) matrix. Because of the high aspect ratio of the graphite nanosheets, the nanocomposite displays a very low percolation threshold. The SR/GN nanocomposite with a volume fraction of conductive nanosheets closest to that for the percolation threshold presents a sharp positive‐pressure coefficient effect of the resistivity under very low pressure, namely, in the finger‐pressure range (0.3–0.7 MPa), whereby the abrupt transition could be attributed to compressive‐stress‐induced deformation of the conducting network. The super‐sensitive piezoresistive behavior of the nanocomposite is accounted for by an extension of the tunneling conduction theory which provides a good approximation to the piezoresistive effect.  相似文献   

4.
Mixed oxide‐ion and electronic conductivity can be exploited in dense ceramic membranes for controlled oxygen separation as a means of producing pure oxygen or integrating with catalytic oxidation. Atomistic simulation has been used to probe the energetics of defects, dopant‐vacancy association, nanoscale cluster formation, and oxide‐ion transport in mixed‐conducting CaTiO3. The most favorable energetics for trivalent dopant substitution on the Ti site are found for Mn3+ and Sc3+. Dopant‐vacancy association is predicted for pair clusters and neutral trimers. Low binding energies are found for Sc3+ in accordance with the high oxide‐ion conductivity of Sc‐doped CaTiO3. The preferred location for Fe4+ is in a hexacoordinated site, which supports experimental evidence that Fe4+ promotes the termination of defect chains and increases disorder. A higher oxide‐ion migration energy for a vacancy mechanism is predicted along a pathway adjacent to an Fe3+ ion rather than Fe4+ and Ti4+, consistent with the higher observed activation energies for ionic transport in reduced CaTi(Fe)O3–δ.  相似文献   

5.
Nanoflakes of α‐Fe2O3 were prepared on Cu foil by using a thermal treatment method. The nanoflakes were characterized by X‐ray diffraction, scanning electron microscopy, high‐resolution transmission electron microscopy, and Raman spectroscopy. The reversible Li‐cycling properties of the α‐Fe2O3 nanoflakes have been evaluated by cyclic voltammery, galvanostatic discharge–charge cycling, and impedance spectral measurements on cells with Li metal as the counter and reference electrodes, at ambient temperature. Results show that Fe2O3 nanoflakes exhibit a stable capacity of (680 ± 20) mA h g–1, corresponding to (4.05 ± 0.05) moles of Li per mole of Fe2O3 with no noticeable capacity fading up to 80 cycles when cycled in the voltage range 0.005–3.0 V at 65 mA g–1 (0.1 C rate), and with a coulombic efficiency of > 98 % during cycling (after the 15th cycle). The average discharge and charge voltages are 1.2 and 2.1 V, respectively. The observed cyclic voltammograms and impedance spectra have been analyzed and interpreted in terms of the ‘conversion reaction' involving nanophase Fe0–Li2O. The superior performance of Fe2O3 nanoflakes is clearly established by a comparison of the results with those for Fe2O3 nanoparticles and nanotubes reported in the literature.  相似文献   

6.
Chemical sensing on oxide sensors is a complex phenomenon involving catalytic activity as well as electronic properties. Thus, the properties of oxide sensors are highly sensitive towards structural changes. Effects like surface area, grain size, and, in addition, the occurrence of defects give separate contributions to the current. Structure–property–function relationships can be elucidated using a combination of state‐of‐the‐art analytical techniques. It is shown, that impurity atoms in the oxide lattice influence the performance of ZnO sensors more strongly than the other factors.  相似文献   

7.
The effects of the surface energy of polymer gate dielectrics on pentacene morphology and the electrical properties of pentacene field‐effect transistors (FETs) are reported, using surface‐energy‐controllable poly(imide‐siloxane)s as gate‐dielectric layers. The surface energy of gate dielectrics strongly influences the pentacene film morphology and growth mode, producing Stranski–Krastanov growth with large and dendritic grains at high surface energy and three‐dimensional island growth with small grains at low surface energy. In spite of the small grain size (≈ 300 nm) and decreased ordering of pentacene molecules vertical to the gate dielectric with low surface energy, the mobility of FETs with a low‐surface‐energy gate dielectric is larger by a factor of about five, compared to their high‐surface‐energy counterparts. In pentacene growth on the low‐surface‐energy gate dielectric, interconnection between grains is observed and gradual lateral growth of grains causes the vacant space between grains to be filled. Hence, the higher mobility of the FETs with low‐surface‐energy gate dielectrics can be achieved by interconnection and tight packing between pentacene grains. On the other hand, the high‐surface‐energy dielectric forms the first pentacene layer with some voids and then successive, incomplete layers over the first, which can limit the transport of charge carriers and cause lower carrier mobility, in spite of the formation of large grains (≈ 1.3 μm) in a thicker pentacene film.  相似文献   

8.
Metal oxide (SnO2, TiO2, In2O3, ZnO) sols are prepared by various sol–gel processes in such a way as to hinder the condensation reactions. The obtained sols are injected at 160 °C into a solution of tetradecene and dodecylamine, and kept under heating for different periods of time. Depending on the starting sol, variously crystallized oxide nanoparticles are obtained, whose phase compositions and chemical structure have been studied by X‐ray diffraction (XRD) and Fourier transform IR spectroscopy. The elimination of the organic residuals has been carried out by thermal treatment, and the thermal evolution of the nanoparticles has been studied by thermal analyses and Raman spectroscopy. High‐resolution transmission electron microscopy studies coupled with XRD measurements show that the thermal treatment does not markedly affect the particle size, which remains in the nanometer‐sized regime (from 3.5 to 8.5 nm, depending on the system), except in the case of ZnO. The thermally purified and stabilized powders, drop‐coated onto alumina substrates with pre‐deposited electrical contacts, have been tested as gas‐sensing devices, displaying outstanding sensing properties even at room temperature.  相似文献   

9.
An electronegative conjugated compound composed of a newly designed carbonyl‐bridged bithiazole unit and trifluoroacetyl terminal groups is synthesized as a candidate for air‐stable n‐type organic field‐effect transistor (OFET) materials. Cyclic voltammetry measurements reveal that carbonyl‐bridging contributes both to lowering the lowest unoccupied molecular orbital energy level and to stabilizing the anionic species. X‐ray crystallographic analysis of the compound shows a planar molecular geometry and a dense molecular packing, which is advantageous to electron transport. Through these appropriate electrochemical properties and structures for n‐type semiconductor materials, OFET devices based on this compound show electron mobilities as high as 0.06 cm2 V?1 s?1 with on/off ratios of 106 and threshold voltages of 20 V under vacuum conditions. Furthermore, these devices show the same order of electron mobility under ambient conditions.  相似文献   

10.
Nature employs specialized macromolecules to produce highly complex structures and understanding the role of these macromolecules allows us to develop novel materials with interesting properties. Herein, we report the role of modified conjugated polymers in the nucleation, growth, and morphology of calcium carbonate (CaCO3) crystals. In situ incorporation of sulfonated poly(p‐phenylene) (s(PPP)) into a highly oriented calcium carbonate matrix is investigated along with the synthesis and patterning of luminescent CaCO3–PPP hybrid materials. Functionalized PPP with polar and nonpolar groups are used as additives in the mineralization medium. The polymer (P1) with polar groups give iso‐oriented calcite crystals, whereas PPP with an additional alkyl chain (P2) results in vaterite crystals. The crystallization mechanism can be explained based on self‐assembly and aggregation of polymers in an aqueous environment. Such light‐emitting hybrid composites with tunable optical properties are excellent candidates for optoelectronics and biological applications.  相似文献   

11.
The relationship between the performance characteristics of organic field‐effect transistors (OFETs) with 2,5‐bis(4‐biphenylyl)bithiophene/copper hexadecafluorophthalocyanine (BP2T/F16CuPc) heterojunctions and the thickness of the BP2T bottom layer is investigated. Three operating modes (n‐channel, ambipolar, and p‐channel) are obtained by varying the thickness of the organic semiconductor layer. The changes in operating mode are attributable to the morphology of the film and the heterojunction effect, which also leads to an evolution of the field‐effect mobility with increasing film thickness. In BP2T/F16CuPc heterojunctions the mobile charge carriers accumulate at both sides of the heterojunction interface, with an accumulation layer thickness of ca. 10 nm. High field‐effect mobility values can be achieved in continuous and flat films that exhibit the heterojunction effect.  相似文献   

12.
The influence of the substitution pattern (unsymmetrical or symmetrical), the nature of the side chain (linear or branched), and the processing of several solution processable alkoxy‐substituted poly(p‐phenylene vinylene)s (PPVs) on the charge‐carrier mobility in organic field‐effect transistors (OFETs) is investigated. We have found the highest mobilities in a class of symmetrically substituted PPVs with linear alkyl chains (e.g., R1, R2 = n‐C11H23, R3 = n‐C18H37). We have shown that the mobility of these PPVs can be improved significantly up to values of 10–2 cm2 V–1 s–1 by annealing at 110 °C. In addition, these devices display an excellent stability in air and dark conditions. No change in the electrical performance is observed, even after storage for thirty days in humid air.  相似文献   

13.
Nanocomposites based on semi‐crystalline poly(vinyl alcohol) (PVA) and well‐dispersed chemically functionalized single‐walled carbon nanotubes are combined through simple mixing. The interaction between the nanotubes and the polymer matrix is studied using optical and thermal methods. Significant enhancement of the mechanical properties is obtained for the functionalized‐nanotube‐based composites. These results imply that promoting nanotube dispersion and strong interfacial bonding through adequate functionalization of nanotubes improves the load transfer from the matrix to the reinforcing phase.  相似文献   

14.
Organic field‐effect transistors (OFETs) based on oligothiophene‐functionalized truxene derivatives have been fabricated for use as novel star‐shaped organic semiconductors in solution‐processible organic electronics. The electronic and optical properties of compounds 1 – 3 , with increasing numbers of thiophene rings at each of the three branches, have been investigated using scanning electron microscopy (SEM), X‐ray diffraction measurements, and ultraviolet–visible (UV‐vis) and photoluminescence spectroscopies. The results show that with a stepwise increase of the thiophene rings at every branch, a transition from a polycrystalline to an amorphous state is observed. The characteristics of compounds 1 , 2 , and 3 used for OFETs exhibit a significant difference. The mobility depends greatly on the morphology in the solid state, and decreases in going from 1 to 3 . Mobilities up to 1.03 × 10–3 cm2 V–1 s–1 and an on/off ratio of about 103 for compound 1 have been achieved; these are the highest values for star‐shaped organic semiconductors used for OFETs so far. All the results demonstrate that the truxene core of the oligothiophene‐functionalized truxene derivatives not only extends the π‐delocalized system, but also leads to high mobilities for the compounds.  相似文献   

15.
Simultaneous introduction of short‐range repulsive interactions between dissimilar colloidal particles and attractive interactions between like particles provides a general new route to fabricating self‐organizing bipolar devices. By identifying combinations of conductive device materials between which short‐range repulsive forces exist in the presence of an intervening liquid, electrochemical junctions can be self‐formed, as reported by Chiang and co‐workers on p. 379. The relationship between the performance characteristics of organic field‐effect transistors (OFETs) with 2,5‐bis(4‐biphenylyl)bithiophene/copper hexadecafluorophthalocyanine (BP2T/F16CuPc) heterojunctions and the thickness of the BP2T bottom layer is investigated. Three operating modes (n‐channel, ambipolar, and p‐channel) are obtained by varying the thickness of the organic semiconductor layer. The changes in operating mode are attributable to the morphology of the film and the heterojunction effect, which also leads to an evolution of the field‐effect mobility with increasing film thickness. In BP2T/F16CuPc heterojunctions the mobile charge carriers accumulate at both sides of the heterojunction interface, with an accumulation layer thickness of ca. 10 nm. High field‐effect mobility values can be achieved in continuous and flat films that exhibit the heterojunction effect.  相似文献   

16.
The synthesis via the Stille coupling of a new family of oligomers derived from benzo[b]thiophene is reported. Owing to their branched molecular structure lacking any symmetry element, these compounds display a low tendency to crystallization and better film‐forming properties than their linear counterparts. Spin‐coated films show photoluminescence efficiencies up to 50 %. Light‐emitting diodes with spin‐coated films as the active layers display markedly improved performance with respect to similar devices based on linear oligothiophenes, with luminance values up to more than 10 000 cd m–2. Semiempirical PM3 and ZINDO/S calculations provide insight into the molecular geometries and electron distribution of the frontier orbitals of the new compounds. Cyclic voltammetry data indicates that the transformation of the thienyl sulfur of benzo[b]thiophene to the corresponding thienyl‐S,S‐dioxide leads an increase in electron affinity by 0.5–0.7 V, analogous to that of the corresponding linear oligomers.  相似文献   

17.
We have fabricated organic field‐effect transistors based on thin films of 2,7‐carbazole oligomeric semiconductors 1,4‐bis(vinylene‐(N‐hexyl‐2‐carbazole))phenylene (CPC), 1,4‐bis(vinylene‐(N′‐methyl‐7′‐hexyl‐2′‐carbazole))benzene (RCPCR), N‐hexyl‐2,7‐bis(vinylene‐(N‐hexyl‐2‐carbazole))carbazole (CCC), and N‐methyl‐2,7‐bis(vinylene‐(7‐hexyl‐N‐methyl‐2‐carbazole))carbazole (RCCCR). The organic semiconductors are deposited by thermal evaporation on bare and chemically modified silicon dioxide surfaces (SiO2/Si) held at different temperatures varying from 25 to 200 °C during deposition. The resulting thin films have been characterized using UV‐vis and Fourier‐transform infrared spectroscopies, scanning electron microscopy, and X‐ray diffraction, and the observed top‐contact transistor performances have been correlated with thin‐film properties. We found that these new π‐conjugated oligomers can form highly ordered structures and reach high hole mobilities. Devices using CPC as the active semiconductor have exhibited mobilities as high as 0.3 cm2 V–1 s–1 with on/off current ratios of up to 107. These features make CPC and 2,7‐carbazolenevinylene‐based oligomers attractive candidates for device applications.  相似文献   

18.
A model of structural transformations of amorphous into quasi‐amorphous BaTiO3 is suggested. The model is based on previously published data and on X‐ray photoelectron spectroscopy data presented in the current report. Both amorphous and quasi‐amorphous phases of BaTiO3 are made up of a network of slightly distorted TiO6 octahedra connected in three different ways: by apices (akin to perovskite), edges, and faces. Ba ions in these phases are located in the voids between the octahedra, which is a nonperovskite environment. These data also suggest that Ba ions compensate electrical‐charge imbalance incurred by randomly connected octahedra and, thereby, stabilize the TiO6 network. Upon heating, the edge‐to‐edge and face‐to‐face connections between TiO6 octahedra are severed and then reconnected via apices. Severing the connections between TiO6 octahedra requires a volume increase, suppression of which keeps some of the edge‐to‐edge and face‐to‐face connections intact. Transformation of the amorphous thin films into the quasi‐amorphous phase occurs during pulling through a steep temperature gradient. During this process, the volume increase is inhomogeneous and causes both highly anisotropic strain and a strain gradient. The strain gradient favors breaking those connections, which aligns the distorted TiO6 octahedra along the direction of the gradient. As a result, the structure becomes not only anisotropic and non‐centrosymmetric, but also acquires macroscopic polarization. Other compounds may also form a quasi‐amorphous phase, providing that they satisfy the set of conditions derived from the suggested model.  相似文献   

19.
Atomistic simulations are employed to probe the deformation behavior of experimentally observed top‐down and bottom‐up face‐centered cubic silver nanowires. Stable, <110> oriented nanowires with a rhombic and truncated‐rhombic cross section are considered, representative of top‐down geometries, as well as the multiply twinned pentagonal nanowire that is commonly fabricated in a bottom‐up approach. The tensile deformation of a stable, experimentally observed structure is simulated to failure for each nanowire structure. A detailed, mechanistic explanation of the initial defect nucleation is provided for each nanowire. The three geometries are shown to exhibit different levels of strength and to deform by a range of mechanisms depending on the nanowire structure. In particular, the deformation behavior of top‐down and bottom‐up nanowires is shown to be fundamentally different. The yield strength of nanowires ranging from 1 to 25 nm in diameter is provided and reveals that in addition to cross‐sectional diameter, the strength of the nanowires is strongly tied to the structure. This study demonstrates that nanowire structure and size may be tailored for specific mechanical requirements in nanometer‐scale devices.  相似文献   

20.
Two series of oligothiophenes (OThs), NaTn and TNTn (n = 2–6 represents the number of thiophene rings), end‐capped with naphthyl and thionaphthyl units have been synthesized by means of Stille coupling. Their thermal properties, optical properties, single crystal structures, and organic field‐effect transistor performance have been characterized. All oligomers display great thermal stability and crystallinity. The crystallographic structures of NaT2 , NaT3 , TNT2 , and TNT3 have been determined. The crystals of NaT2 and NaT3 are monoclinic with space group P21/C, while those of TNT2 and TNT3 are triclinic and orthorhombic with space groups P and P212121, respectively. All oligomers adopt the well‐known herringbone packing‐mode in crystals with packing parameters dependent on the structure of the end‐capping units and the number of thiophene rings. The shorter intermolecular distance in NaT3 compared to NaT2 indicates that the intermolecular interaction principally increases with increasing molecular length. X‐ray diffraction and atomic force microscopy (AFM) characterization indicate that the NaTn oligomers can form films with better morphology and high molecular order than TNTn oligomers with the same number of thiophene rings. The NaTn oligomers exhibit mobilities that are much higher than those for TNTn oligomers (0.028–0.39 cm2 V–1 s–1 versus 0.010–0.055 cm2 V–1 s–1, respectively). In particular, the NaTn oligomers with n = 4–6 all show a mobility higher than 0.1 cm2 V–1 s–1. This device performance is among the best in aryl end‐capped OThs, and indicates that naphthyl is an effectual building block for designing high‐performance organic semiconducting materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号