首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phage peptide display libraries are commonly used to select peptides that bind to inorganic surfaces (metals, metal oxides, and semiconductors). These binding peptides can serve as templates to control the nucleation and growth of inorganic nanoparticles in vitro. In this report, we describe the identification of a unique set of sequences that bind to silver and cobalt nanoparticles from a phage peptide display library using a polymerase chain reaction (PCR)‐driven method. The amino acid sequences obtained by the PCR method are a distinct set of sequences that would otherwise be missed using the regular panning method. Peptides identified by the method described here are also shown to function as templates for the synthesis of silver and cobalt platinum nanoparticles.  相似文献   

2.
Poly(vinylbenzyl chloride), (PVBC) latex particles of about 100 nm in size are prepared by emulsion polymerization. Silyl functional groups are introduced onto the PVBC‐nanoparticle templates via surface‐initiated atom transfer radical polymerization of 3‐(trimethoxysilyl)propyl methacrylate. The silyl groups are then converted into a silica shell, approximately 20 nm thick, via a reaction with tetraethoxysilane in ethanolic ammonia. Hollow silica nanospheres are finally generated by thermal decomposition of the PVBC template cores. Field‐emission scanning electron microscopy and field‐emission transmission electron microscopy are used to characterize the intermediate products and the hollow nanospheres. Fourier‐transform infrared spectroscopy results indicate that the polymer cores are completely decomposed.  相似文献   

3.
Protein microtubules (MTs) 25 nm in diameter and tens of micrometers long have been used as templates for the biomimetic mineralization of FeOOH. Exposure of MTs to anaerobic aqueous solutions of Fe2+ buffered to neutral pH followed by aerial oxidation leads to the formation of iron oxide coated MTs. The iron oxide layer was found to grow via a two‐step process: initially formed 10–30 nm thick coatings were found to be amorphous in structure and comprised of several iron‐containing species. Further growth resulted in MTs coated with highly crystalline layers of lepidocrocite with a controllable thickness of up to 125 nm. On the micrometer size scale, these coated MTs were observed to form large, irregular bundles containing hundreds of individually coated MTs. Iron oxide grew selectively on the MT surface, a result of the highly charged MT surface that provided an interface favorable for iron oxide nucleation. This result illustrates that MTs can be used as scaffolds for the in‐situ production of high‐aspect‐ratio inorganic nanowires.  相似文献   

4.
Hollow latex cages (HLCs) are used as templates to fabricate composite hollow spheres with complex structures. The template HLCs have a polystyrene shell with transverse hydrophilic channels connecting to an interior hydrophilic surface. They are stable and permeable, and a reagent can be preloaded into the cavity reservoir. The interior hydrophilic surface is conducive to a favorable inward synthesis. By simply altering the loading sequence of reagents and their concentration, the morphology of the composite spheres can be tuned. For example, during the formation of titania composite spheres by a sol–gel process using tetrabutyl titanate (TBT), composite hollow spheres with titania pillars protruding from the surface are predominantly created, owing to the formation of titania within the hydrophilic channels when the HLCs, preloaded with water, are immersed into TBT at an appropriate concentration. When the TBT concentration is decreased, the size of the pillars decreases accordingly until they disappear, leading to a smooth outer surface. Conversely, when HLCs loaded with TBT are immersed into water, titania forms only on the interior hydrophilic surface and not within the channels, resulting in composite hollow spheres with smooth outer surfaces. The composite spheres can be further used as templates to grow material on the outer surface, and double‐shelled hollow spheres of various compositions are achieved. Macroporous materials with unique morphologies—for example, hollow spheres embedded within the pores—have been derived by using an array template of the composite spheres. The method can be applied to a diversity of inorganic materials, metals, oxides, semiconductors, and functional polymers.  相似文献   

5.
Nanometer‐sized surfactant‐templated materials are prepared in the form of stable suspensions of colloidal mesoporous silica (CMS) consisting of discrete, nonaggregated particles with dimensions smaller than 200 nm. A high‐yield synthesis procedure is reported based on a cationic surfactant and low water content that additionally enables the adjustment of the size range of the individual particles between 50 and 100 nm. Particularly, the use of the base triethanolamine (TEA) and the specific reaction conditions result in long‐lived suspensions. Dynamic light scattering reveals narrow particle size distributions in these suspensions. Smooth spherical particles with pores growing from the center to the periphery are observed by using transmission electron microscopy, suggesting a seed‐growth mechanism. The template molecules could be extracted from the nanoscale mesoporous particles via sonication in acidic media. The resulting nanoparticles give rise to type IV adsorption isotherms revealing typical mesopores and additional textural porosity. High surface areas of over 1000 m2 g–1 and large pore volumes of up to 1 mL g–1 are obtained for these extracted samples.  相似文献   

6.
Nickel sulfide (NiS) hollow spheres have been successfully synthesized by γ‐irradiation, at room temperature, of an aqueous PMMA–CS2–ethanol solution that contains NiSO4·6H2O. Electron microscopy results show that the diameter of the NiS hollow spheres and the thickness of the sphere shells are about 500 nm and 20 nm, respectively. The room‐temperature UV‐vis absorption spectrum of the NiS hollow spheres gives a peak centered at around 233 nm (5.56 eV) with a remarkable blue‐shift relative to that of bulk NiS (2.1 eV). This remarkable blue‐shift may be attributed to the small dimensions of the materials. A possible growth mechanism of NiS hollow spheres by γ‐irradiation method is also presented. The successful preparation of NiS hollow spheres on a large scale under mild conditions could be of interest for both applications and fundamental studies.  相似文献   

7.
Colloidal dispersions of titania, zirconia, tin oxide, indium oxide, and ceria have been successfully used to impregnate membrane templates and form the respective metal oxide (MO) porous films. The use of alumina and iron oxide sols in the same procedure, however, resulted in compact structures. By mixing different nanoparticle solutions before impregnation, final inorganic films containing two metal oxides, of variable metal oxide ratios, were obtained. The porous inorganic materials were analyzed in terms of surface area, pore size, film thickness, and crystallinity. The mechanism of nanoparticle infiltration and particle adsorption to the template walls is proposed based on the stability of the inorganic film and a study of the influence of either the sol concentration or washing times on the amount of inorganic substance incorporated in the hybrid material. The photocatalytic decomposition of an organic pollutant, 2‐chlorophenol, was demonstrated for the porous titania material along with the structures containing mixtures of titania with zirconia, indium oxide, and tin oxide. A ratio of 9:1 TiO2/MO gave the highest photocatalytic activity, which was higher than the activity of Degussa P25 for the TiO2/In2O3 and TiO2/SnO2 systems under the same conditions. The titania films have also been attached to substrates—glass or indium tin oxide (ITO) surfaces—and the photoelectrochemical properties of the porous film attained. A comparison with a spin‐coated titania film (prepared from the same colloidal dispersion) showed that the structured porous inorganic film has two times the photoelectrochemical efficiency as the spin‐coated film.  相似文献   

8.
Magnetite nanocrystals are synthesized in the presence of a recombinant Mms6 protein thought to be involved in the biomineralization of bacterial magnetite magnetosomes, the mammalian iron‐storage protein, ferritin, and two proteins not known to bind iron, lipocalin (Lcn2) and bovine serum albumin (BSA). To mimic the conditions at which magnetite nanocrystals are formed in magnetotactic bacteria, magnetite synthesis is performed in a polymeric gel to slow down the diffusion rates of the reagents. Recombinant Mms6 facilitates formation of ca. 30 nm single‐domain, uniform magnetite nanocrystals in solution, as verified by using transmission electron microscopy analysis and magnetization measurements. The nanocrystals formed in the presence of ferritin, Lcn2, and BSA, do not exhibit the uniform sizes and shapes observed for those produced in the presence of Mms6. Mms6‐derived magnetite nanoparticles show the largest magnetization values above the blocking temperature, as well as the largest magnetic susceptibility compared to those of the nanomaterials synthesized with other proteins. The latter is indicative of a substantial effective magnetic moment per particle, which is consistent with the presence of magnetite with a well‐defined crystalline structure. The combination of electron microscopy analysis and magnetic measurements confirms our hypothesis that Mms6 promotes the shape‐selective formation of uniform superparamagnetic nanocrystals. This provides a unique bioinspired route for synthesis of uniform magnetite nanocrystals.  相似文献   

9.
A series of manganese oxide‐loaded SBA‐15 (MnSBA‐xh, x = 1, 2, 3, 4, 5, 6; h: hour(s)) mesoporous materials are synthesized via a facile, in‐situ reduction method with a surfactant template. The composite materials are characterized using Fourier‐transform infrared spectroscopy, X‐ray diffraction, N2 sorption isotherms, X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy, energy‐dispersive spectroscopy, and CO oxidation catalysis. The results show that a high content of manganese (an atomic ratio of Mn/Si from 0.12 up to approximately 1) could be loaded into the channels of SBA‐15 when treated with an aqueous solution of potassium permanganate, while retaining the ordered mesostructure and large surface area of SBA‐15. Increasing the manganese oxide content results in a gradual decrease in the specific surface area, pore size, and pore volume. XPS spectra are employed to confirm the redox reaction between KMnO4 and the surfactant. CO‐conversion tests on the calcined MnSBA‐2h sample (MnSBA‐2h‐cal) shows that it has a repeatable, and relatively high, catalytic activity.  相似文献   

10.
The fabrication of a hierarchically structured Ni(OH)2 monolayer hollow‐sphere array with the shell composed of building blocks of nanoflakelets is demonstrated based on a colloidal monolayer and electrochemical deposition. The morphology can be easily controlled by the colloidal monolayer and deposition parameters. Importantly, such monolayer hollow‐sphere array shows a morphology‐ and size‐dependent tunable optical transmission stop band. This stop band can be easily tuned from 455–1855 nm by changing the size of the hollow spheres between 1000 and 4500 nm, and also fine‐adjusted by changing the deposition time. The array exhibits a nearly incident‐angle‐independent position of the stop band that 3D photonic crystals do not possess. This structure may have potential applications in optical devices, photonic crystals, and sensors for gas detection.  相似文献   

11.
The fabrication of hierarchically structured Ni(OH)2 monolayer hollow‐sphere arrays with the shell composed of building blocks of nanoflakelets is reported on p. 644 by Weiping Cai and co‐workers. The morphology can be easily controlled by the synthesis parameters, and the arrays show a tunable optical transmission stop band. Tuning can be achieved by changing the size or morphology of the hollow spheres. Such arrays may have potential applications in optical devices, photonic crystals, and as sensors for gas detection. The fabrication of a hierarchically structured Ni(OH)2 monolayer hollow‐sphere array with the shell composed of building blocks of nanoflakelets is demonstrated based on a colloidal monolayer and electrochemical deposition. The morphology can be easily controlled by the colloidal monolayer and deposition parameters. Importantly, such monolayer hollow‐sphere array shows a morphology‐ and size‐dependent tunable optical transmission stop band. This stop band can be easily tuned from 455–1855 nm by changing the size of the hollow spheres between 1000 and 4500 nm, and also fine‐adjusted by changing the deposition time. The array exhibits a nearly incident‐angle‐independent position of the stop band that 3D photonic crystals do not possess. This structure may have potential applications in optical devices, photonic crystals, and sensors for gas detection.  相似文献   

12.
Aqueous solutions of sodium carboxymethyl cellulose are used for the morphosynthesis of spherical and wire‐shaped biopolymer networks, in which Fe3+ cations serve as a crosslinking and hardening agent. Their morphology remains intact upon drying, resulting in monolithic beads (1 mm) and wires (ca. 80 μm), which are exploited as reaction vessels to pre‐encapsulate poly(ethylene glycol) 400 (PEG 400) and cobalt cations. A solid‐state reaction in an inert atmosphere at 600 °C affords porous carbonaceous xerogels, macroscopically shaped as beads or wires and decorated with nanocrystalline magnetic iron oxide, metallic iron, or iron–cobalt alloy particles, thus imparting magnetic properties to the products. As such the reduction of Fe3+ species to α‐Fe nanoparticles can be achieved without H2 treatment, since poly(ethylene glycol) serves as a reducing agent and the encapsulated Co2+ aids in the subsequent growth of the metallic iron particles. Particularly interesting are the magnetic properties of the carbon–α‐Fe composite, in which the size of the magnetic particles, estimated near the boundaries of the single magnetic domain, gives rise to increased coercivity compared with that of bulk iron.  相似文献   

13.
Microrods of the ferrosulfide minerals greigite (Fe3S4) and marcasite (FeS2) are selectively synthesized by an in situ magnetic‐field‐assisted hydrothermal route. Each complex microrod is composed of fine building blocks with different shapes. The unique magnetic properties of the microrods and electrical performance of a single microrod are studied. The results demonstrate that the magnetic properties of the ferrosulfide minerals are strongly related to their corresponding microstructures. The value of the low‐temperature transition increases as the greigite component in the product decreases. The combination of small‐molecule sulfur precursors and an applied magnetic field makes possible the selective synthesis of ferrosulfide minerals with different phases and distinct microstructures, underlining the fact that the magnetic field can be a useful tool as well as an independent parameter for the phase‐selective synthesis and self‐assembly of inorganic building blocks in solution chemistry.  相似文献   

14.
Colloidal aggregates with well‐controlled sizes, shapes, and structures have been fabricated by dewetting aqueous dispersions of monodispersed spherical colloids across surfaces patterned with two‐dimensional arrays of relief structures (or templates). The capability and feasibility of this approach have been demonstrated with the organization of polymer latex or silica beads into homo‐aggregates, including circular rings; polygonal and polyhedral clusters; and linear, zigzag, and spiral chains. It was also possible to generate hetero‐aggregates in the configuration of HF and H2O molecules that contained spherical colloids of different sizes, compositions, densities, functions, or a combination of these features. These uniform, well‐defined aggregates of spherical colloids are ideal model systems to investigate the aerodynamic, hydrodynamic, and optical properties of colloidal particles characterized by non‐spherical shapes and/or complex topologies. They can also serve as a new class of building blocks to generate hierarchically self‐assembled structures that are expected to exhibit interesting features valuable to areas ranging from condensed matter physics to photonics.  相似文献   

15.
Linear poly(ethylene imine) (PEI) can self‐organize into fibrous aggregates with a crystalline core and a brushlike shell of ethyleneimine (EI) segments. Silicification from alkoxysilane mediated by PEI aggregates easily produces silica nanofibers (20–23 nm in diameter) with a core of axial, crystalline PEI filaments (5–7 nm in width) and a shell of silica (6–8 nm in thickness). Removing the axial filament of PEI from the silica nanofiber by calcination produces silica nanotubes. More interestingly, a nanowire‐like platinum lining is formed in the silica nanofiber—a result of the PEI filament's ability to reduce PtCl42–. The degree of polycondensation, composition, and surface area of the resulting silica are investigated by 29Si magic angle spinning NMR spectroscopy, elemental analysis, and N2/He adsorption–desorption measurements. The time course of the reaction and the amount of silica source needed for silica‐fiber formation confirm that silica deposition occurs exclusively and site selectively on the surface of the organized, fibrous PEI. Thus, the fibrous aggregates of PEI appear to be highly suitable for depositing silica fibers from both tetramethoxysilane and tetraethoxysilane.  相似文献   

16.
A new concept is proposed to synthesize mesoporous magnetic nanocomposite particles of great scientific and technological importance. Mesoporous silica coatings were created on micrometer‐sized magnetite (Fe3O4) particles using cetyltrimethylammonium chloride micelles as molecular templates. The characterization by transmission electron microscopy (TEM), nitrogen adsorption–desorption, diffuse‐reflectance Fourier‐transform infrared spectroscopy, and zeta‐potential measurements confirmed the deposition of mesoporous silica thin layers on the magnetite particles. The synthesized particles showed a drastic increase in specific surface area with an average pore size of 2.5 nm. The coating material showed a negligible effect on the saturation magnetization of the original particles that were fully protected by silica coatings. The synthesized mesoporous magnetic nanocomposite particles have a wide range of applications in toxin removal, waste remediation, catalysis, reactive sorbents, and biological cell separations.  相似文献   

17.
Periodic mesoporous organosilica (PMO) thin films have been produced using an evaporation‐induced self‐assembly (EISA) spin‐coating procedure and a cationic surfactant template. The precursors are silsesquioxanes of the type (C2H5O)3Si–R–Si(OC2H5)3 or R′–[Si(OC2H5)3]3 with R = methene (–CH2–), ethylene (–C2H2–), ethene (–C2H4–), 1,4‐phenylene (C6H4), and R′ = 1,3,5‐phenylene (C6H3). The surfactant is successfully removed by solvent extraction or calcination without any significant Si–C bond cleavage of the organic bridging groups R and R′ within the channel walls. The materials have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X‐ray diffraction (PXRD), and 29Si and 13C magic‐angle spinning (MAS) NMR spectroscopy. The d‐spacing of the PMOs is found to be a function of R. Nanoindentation measurements reveal increased mechanical strength and stiffness for the PMOs with R = CH2 and C2H4 compared to silica. Films with different organic‐group content have been prepared using mixtures of silsesquioxane and tetramethylorthosilicate (TMOS) precursors. The dielectric constant (k) is found to decrease with organic content, and values as low as 1.8 have been measured for films thermally treated to cause a “self‐hydrophobizing” bridging‐to‐terminal transformation of the methene to methyl groups with concomitant loss of silanols. Increasing the organic content and thermal treatment also increases the resistance to moisture adsorption in 60 and 80 %‐relative‐humidity (RH) environments. Methene PMO films treated at 500 °C are found to be practically unchanged after five days exposure to 80 % RH. These low dielectric constants, plus the good thermal and mechanical stability and the hydrophobicity suggest the potential utility of these films as low‐k layers in microelectronics.  相似文献   

18.
Three‐dimensionally ordered macroporous (3DOM) materials are composed of well‐interconnected pore and wall structures with wall thicknesses of a few tens of nanometers. These characteristics can be applied to enhance the rate performance of lithium‐ion secondary batteries. 3DOM monoliths of hard carbon have been synthesized via a resorcinol‐formaldehyde sol–gel process using poly(methyl methacrylate) colloidal‐crystal templates, and the rate performance of 3DOM carbon electrodes for lithium‐ion secondary batteries has been evaluated. The advantages of monolithic 3DOM carbon electrodes are: 1) solid‐state diffusion lengths for lithium ions of the order of a few tens of nanometers, 2) a large number of active sites for charge‐transfer reactions because of the material's high surface area, 3) reasonable electrical conductivity of 3DOM carbon due to a well‐interconnected wall structure, 4) high ionic conductivity of the electrolyte within the 3DOM carbon matrix, and 5) no need for a binder and/or a conducting agent. These factors lead to significantly improved rate performance compared to a similar but non‐templated carbon electrode and compared to an electrode prepared from spherical carbon with binder. To increase the energy density of 3DOM carbon, tin oxide nanoparticles have been coated on the surface of 3DOM carbon by thermal decomposition of tin sulfate, because the specific capacity of tin oxide is larger than that of carbon. The initial specific capacity of SnO2‐coated 3DOM carbon increases compared to that of 3DOM carbon, resulting in a higher energy density of the modified 3DOM carbon. However, the specific capacity decreases as cycling proceeds, apparently because lithium–tin alloy nanoparticles were detached from the carbon support by volume changes during charge–discharge processes. The rate performance of SnO2‐coated 3DOM carbon is improved compared to 3DOM carbon.  相似文献   

19.
The synthesis of single‐crystalline, cubic perovskite KMnF3 and NH4MnF3 nanorods, and their rare‐earth‐ion‐doped analogues with reproducible shapes and sizes, has been realized using a modified template‐directed approach, report Stanislaus Wong and co‐workers on p. 103. The properties of the nanorods and their as‐doped counterparts suggest their practical incorporation into functional nanometer‐scale devices with applications in a number of fields. The cover shows the crystal structure of perovskite fluorides overlaid on a SEM image of as‐prepared KMnF3 nanorods with diameters measuring around 50 nm. The generalized green synthesis of single‐crystalline KMnF3 and NH4MnF3 nanorods as well as of their rare‐earth ion doped analogues, possessing reproducible shape and controllable size, has been achieved using a modified template‐directed approach under ambient room‐temperature conditions, with simple inorganic salts as functional precursors. Extensive characterization of the resulting nanorods has been performed using diffraction, electron microscopy, optical spectroscopy, as well as magnetic techniques. We have studied the antiferromagnetism of as‐prepared ternary metal fluoride nanorods as well as the luminescence of their as‐doped counterparts. Our collective data suggest the possibility of the incorporation of these high‐quality, chemically pure materials into functional nanoscale devices with various potential applications that exploit the interesting optomagnetic properties of these systems.  相似文献   

20.
Metal oxide (SnO2, TiO2, In2O3, ZnO) sols are prepared by various sol–gel processes in such a way as to hinder the condensation reactions. The obtained sols are injected at 160 °C into a solution of tetradecene and dodecylamine, and kept under heating for different periods of time. Depending on the starting sol, variously crystallized oxide nanoparticles are obtained, whose phase compositions and chemical structure have been studied by X‐ray diffraction (XRD) and Fourier transform IR spectroscopy. The elimination of the organic residuals has been carried out by thermal treatment, and the thermal evolution of the nanoparticles has been studied by thermal analyses and Raman spectroscopy. High‐resolution transmission electron microscopy studies coupled with XRD measurements show that the thermal treatment does not markedly affect the particle size, which remains in the nanometer‐sized regime (from 3.5 to 8.5 nm, depending on the system), except in the case of ZnO. The thermally purified and stabilized powders, drop‐coated onto alumina substrates with pre‐deposited electrical contacts, have been tested as gas‐sensing devices, displaying outstanding sensing properties even at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号