首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
使用圆柱形TB6钛合金试样在Thermecmaster-Z型热模拟试验机上进行热模拟压缩实验(变形温度为825~1100℃,应变速率为0.001~1 s-1)。对采集的流变数据进行加工硬化率处理,确定动态再结晶体积分数,研究了TB6钛合金β区变形的动态再结晶动力学。结果表明,流变应力随着变形温度的降低或应变速率的提高而增大,流变曲线呈现出动态再结晶类型的特征。随着应变速率的降低和变形温度的提高,动态再结晶的体积分数和晶粒尺寸增大。在变形温度高于950℃、应变速率低于0.001 s-1条件下,动态再结晶的晶粒严重粗化。动态再结晶动力学曲线经历缓慢增加—快速增加—缓慢增加三个阶段,呈现出典型的“S”型特征。确定了动态再结晶的体积分数达到50%时的应变,建立了TB6钛合金的动态再结晶动力学模型。  相似文献   

2.
新型含铝奥氏体耐热合金(AFA)进行压缩热模拟试验,使用OM和EBSD等手段研究了这种合金在950~1150℃和0.01~5 s-1条件下的微观组织演变、建立了基于动态材料模型热加工图、分析了变形参数对合金加工性能的影响并按照不同区域组织变形的特征构建了合金的热变形机理图。结果表明:新型AFA合金的高温流变应力受到变形温度和应变速率的显著影响。在变形温度为950~1150℃和应变速率为0.18~10 s-1条件下,这种合金易发生流变失稳。在变形温度为1050~1120℃、应变速率0.01~0.1 s-1和变形温度1120~1150℃、应变速率10-0.5~10-1.5 s-1这两个区间,这种合金发生完全动态再结晶行为且其再结晶晶粒均匀细小,功率耗散因子η达到峰值45%。新型AFA合金的热加工艺,应该优先选择再结晶区域。  相似文献   

3.
使用Gleeble-3800热模拟实验机进行一系列热模拟压缩实验,研究了电子束冷床熔炼TC4钛合金在变形温度为850℃~1100℃、应变速率为0.01 s-1~10 s-1条件下的热变形行为。根据真应力-真应变曲线分析变形参数对流变应力的影响,分别建立电子束冷床熔炼TC4钛合金在(α+β)两相区和β单相区的Arrhenius本构模型,绘制了基于动态材料模型的热加工图。结果表明:流变应力随着温度的提高和应变速率的增大而降低;(α+β)两相区的热变形激活能Q=746.334 kJ/mol,β单相区的热变形激活能Q=177.841 kJ/mol;用相关系数法和相对平均误差分析了模型的误差,相关系数R2=0.995,相对平均误差AARE=5.04%。这些结果表明,所建立的模型较为准确,可准确预测其热变形流变应力;合金的最佳加工区域为:变形温度1000~1100℃、应变速率0.01~0.1 s-1。  相似文献   

4.
使用Gleeble-3800 热模拟试验机研究了Ti-62A合金在变形温度为800~950℃、应变速率为0.001~10 s-1条件下的热压缩变形行为。结果表明,随着变形温度的提高出现Ti-62A合金的动态软化率降低的反常现象。(α+β)双相钛合金中Mo、Cr等β稳定元素的原子活性随着温度的升高而逐渐降低和β相比例增大,Jmatpro软件的热力学计算表明(α+β)双相钛合金的这一现象与此有密切关系。而α钛合金和β钛合金出现动态软化速率降低,与加工温度升高β相比例增大的关系更密切。从800℃升高到950℃,Ti-62A合金中β相的比例由32.1%提高到84.3%,Mo、Cr活性的降幅均达到64%。这些因素使变形过程中Ti-62A合金的晶界迁移速度和动态软化速率均随变形温度升高而降低,其950℃的真应力-应变曲线多为典型的动态回复型。α相的含量随着变形温度的提高而降低,且在较高的变形温度下β相的晶粒尺寸也较为粗大。构建的基于应变补偿的Ti-62A合金Arrhenius变形抗力模型,能较好地预测合金的流变应力行为,其相关系数R达到0.990,预测值与实测值的平均相对误差为8.983%。  相似文献   

5.
应用Gleeble热模拟技术、EBSD、SEM和OM系统地研究了高温合金GH4169在温度为1000~1150℃、应变速率为0.01~1 s-1条件下变形的动态再结晶机制和组织演变规律。结果表明:在1000~1150℃、应变速率为0.01~1 s-1条件下高温合金GH4169的变形抗力最高可达400 MPa;基于动态材料模型绘制出此合金的功率耗散图和流变失稳图,得到了该合金优化的加工区间变形参数为1020~1070℃和0.03~0.63 s-1。分析GH4169在变形过程中动态再结晶演化规律,明确了动态再结晶晶粒以在原奥氏体晶界处的非连续动态再结晶为主,连续动态再结晶以亚晶持续旋转机制形核。还确定了Σ3n非共格孪晶界演变规律,动态再结晶晶粒的体积分数比越大晶粒越细小Σ3晶界密度越高,动态再结晶晶粒的长大优先于Σ3n非共格孪晶界的形成。  相似文献   

6.
利用热模拟实验研究7B04包铝复合板在变形温度为380~450℃和应变速率为0.1~30 s-1的热压缩性能,结果表明:随着真应变的增加,热加工图失稳区逐渐向高应变速率区域扩展。最适宜的热加工区域为:温度380~410℃,应变速率5~30 s-1。采用EBSD技术对变形后的组织进行表征,结果表明:随着温度的增加和应变速率的降低,再结晶晶粒趋向于晶界平直化及晶界取向差逐渐增加的方向演变。包铝层在变形过程中主要发生连续动态再结晶,而7B04基体中同时存在不连续动态再结晶、连续动态再结晶(含几何动态再结晶)。材料最佳的热变形温度为410℃和应变速率10 s-1,此时7B04基体和包铝层的晶粒尺寸均保持在较小的范围内。  相似文献   

7.
赵言  唐建国  张勇  郑许  赵辉 《材料导报》2024,(8):211-216
采用等温压缩实验并结合电子背散射衍射手段,研究了应变速率对7065铝合金热变形行为的影响规律。结果表明,随着应变速率由0.001 s-1增加到30 s-1,合金的动态再结晶面积分数先显著减少,在1 s-1时达到较低水平,而后变化幅度小于10%,当应变速率大于1 s-1时,合金的亚结构面积分数显著增加。低应变速率阶段(0.001~1 s-1)的软化机制为动态再结晶(DRX)机制和动态回复(DRV)机制,而高应变速率阶段(1~30 s-1)的软化机制为DRV机制。随着应变速率的增加,等温压缩变形后合金的形变储能逐渐增加。  相似文献   

8.
王磊  刘峰  田野  陈宏远  池强 《材料导报》2023,(S1):456-460
采用Gleeble-3500热模拟试验机研究了UNS N08028(028)合金在温度950~1 200℃和应变速率0.001~10 s-1条件下的热变形行为。分析了合金的流变应力曲线、变形激活能及变形机制,明确了加工图能耗峰值与动态再结晶(DRX)晶粒尺寸、体积分数、σ析出相等微观组织演化规律,确定了合金最优加工路径。结果表明,028合金加工图存在五个能耗峰值区与DRX形核和生长过程密切相关:高应变速率区域的能耗峰值与DRX形核有关;低温低应变速率区域能耗峰值与DRX形核和生长有关;高温低应变速率区域的能耗峰值与DRX生长相关。温度低于1 000℃时,σ析出相对DRX形核产生影响,低应变速率(<0.01 s-1),粗大σ相促进DRX形核,形成典型“链状结构”,出现能耗峰值。高应变速率(>0.1 s-1),细小σ析出相抑制DRX形核,导致局部应力集中,材料发生失稳。最后,利用加工图分析确定了028合金最优加工路径:开始于1 150~1 200℃,1~10 s-1,结束于1 100~1 1...  相似文献   

9.
使用Gleeble-3800热模拟试验机对TA5钛合金进行等温恒应变速率压缩,研究其在变形温度为850~1050℃、应变速率为0.001~10 s-1和最大变形量为60%条件下的高温热变形行为;建立了引入物理参量的应变补偿本构模型,并根据DMM模型得到了加工图。结果表明:TA5钛合金为正应变速率敏感性和负变形温度相关性材料;考虑物理参量的应变补偿本构模型具有较高的预测精度,其相关系数R为0.99,平均相对误差AARE为8.95%。分析加工图和观察微观组织,发现失稳区域(850~990℃,0.05~10 s-1)的主要变形机制为局部流动;稳定区域(870~990℃,0.005~0.05 s-1)的主要变形机制为动态回复和动态再结晶。TA5钛合金的最佳热加工工艺参数范围为870~990℃和0.005~0.05 s-1。  相似文献   

10.
进行新型奥氏体耐热钢(CHDG-A)的热压缩实验,研究了在900~1100℃、应变速率为0.01-10 s-1条件下这种钢的热变形特征。结果表明:随着变形温度的提高或应变速率的降低这种钢的流变应力显著降低。基于Arrhenius模型构建了这种材料的本构方程,得到CHDG-A热变形激活能Q为515.618 kJ/mol。微观组织分析结果表明,动态再结晶(DRX)是该材料在实验热变形条件下最主要的软化方式,DRX形核主要通过晶界弓出,变形温度的升高和应变速率降低均有利于再结晶形核。基于真应力-应变曲线求得动态再结晶用Z参数表示的峰值和临界值(σpεpσcεc),并确定了εc/εp,σc/σp的比值分别为0.52和0.98。同时,还基于Avrami方程建立了CHDG-A的DRX动力学模型。  相似文献   

11.
在变形温度为870~960℃、应变速率为5×10-4 s-1~5×10-2 s-1的条件下对Ti-6Al-4V合金进行单道次等温压缩实验,测出其应力-应变曲线并建立KM模型、Poliak-Jonas模型和Avrami模型,较为系统地描述了这种合金动态再结晶过程中的流变应力、临界应变量、组织演变动力学等的特征。将动态再结晶组织的转变体积分数引入Prasad功率耗散率模型,得到了Ti-6Al-4V合金动态再结晶过程中能量的变化规律并结合微观组织表征揭示了这种合金的动态再结晶机理。结果表明:随着变形温度的提高和应变速率的降低,Ti-6Al-4V合金的动态再结晶临界应变量减小,组织转变的体积分数增大。发生完全动态再结晶时的功率耗散率大于0.34,形核机制为位错诱导的弓出形核机制。  相似文献   

12.
使用热模拟试验机在1123~1423 K/0.01~10 s-1变形条件下对18.5%对Cr高Mn节镍型双相不锈钢进行了变形量为70%的大变形热压缩,研究其在热变形过程中两相的亚结构特征和软化机理。结果表明,在0.01~0.1 s-1/1123~1223 K范围的热压缩软化以铁素体相的再结晶为主,而在0.1 s-1/1323~1423 K和10 s-1/1223 K范围的热压缩软化以奥氏体相的再结晶为主。在变形温度为1223 K、应变速率由0.01 s-1增大到10 s-1的条件下铁素体相内的位错缠结向胞状结构演化并出现位错线,奥氏体相内的亚结构则转变为细小的再结晶晶粒。应变速率为0.1 s-1、变形温度由1123 K提高到1323 K时铁素体相内的位错增加,变形晶粒向胞状组织演化而奥氏体相内的位错减少,由回复组织转变为再结晶组织。根据热变形方程计算出表观应力指数n=7.13,热变形激活能Q=514.29 kJ/mol,并建立了Z参数关系本构方程。根据加工硬化率得到再结晶临界条件,并确定了Z参数与再结晶临界条件的关系。对热加工图的分析结果表明,随着变形量的增大失稳区逐渐减小,最佳加工区域为1348~1423 K/1~10 s-1,功率耗散系数大于0.4。  相似文献   

13.
利用Gleeble-3500热模拟试验机对Mg-9Al-3Si-0.375Sr-0.78Y合金试样进行等温恒应变速率压缩实验,研究其在温度250~400℃、应变速率0.001~10s~(-1)条件下的热变形行为。结果表明:在热变形过程中,峰值应力随着应变速率的降低和温度的升高而减小,且峰值应力对应变速率的敏感性随着变形温度的下降而增强。建立了考虑应变的热变形Arrhenius本构模型,模型精度良好,在300,350℃及0.001~10s~(-1)范围内,模型的平均绝对误差分别为1.57%和1.76%;合金的平均变形激活能为183.58k J/mol,平均应变速率敏感指数为0.1616。热变形过程中,α-Mg相呈现明显的动态再结晶特征,β-Mg17Al12相尺寸减小且分布均匀,初生Mg_2Si相较小。在低温(250~300℃)变形时,动态再结晶仅发生在晶界处。在高温(350~400℃)变形时,初生α-Mg晶粒发生了明显的动态再结晶。随着温度的增加和应变速率的降低,再结晶程度提高,再结晶晶粒逐渐长大。  相似文献   

14.
使用Gleeble热模拟试验机、XRD、OM、SEM和TEM等手段研究了9Mn27Al10Ni3Si低密度钢在850~1050℃和0.01~5 s-1条件下的热压缩变形特征及其机制。结果表明,对这种钢在850~950℃进行低应变速率(0.01~1 s-1)热压缩时,κ-碳化物的析出和粗化以及在热压缩过程中摩擦系数的增大使其应变达到临界值后流变应力明显增大;随着应变速率的提高,实验钢的孪生显著增强,显著加快了奥氏体的动态再结晶过程,使其在高应变速率热压缩时动态再结晶的程度比低应变速率压缩时更为显著。再结晶的软化作用,使上述流变应力异常增大的现象逐渐减弱甚至消失。  相似文献   

15.
在变形温度为750~1000℃、应变速率为0.01~10 s-1条件下,对铸态BFe30-1-1铜镍合金进行了热压缩实验。综合分析摩擦和温升对合金流变应力的影响,利用修正后的流变应力曲线构建了BFe30-1-1铜镍合金的Arrhenius双曲正弦函数本构关系模型,基于动态材料模型构建合金的热加工图,研究合金热变形过程中的组织演变规律。结果表明:合金的峰值流变应力随着变形温度的降低或应变速率的增加而升高,摩擦和温升能够显著影响合金的真应力-真应变曲线,热变形过程中发生了动态再结晶,本研究构建的合金本构关系模型对峰值应力的预测值与修正后实验值的平均相对误差仅为3.77%,能够准确地预测合金在不同热变形条件下的流变应力。结合热加工图和微观组织分析,合金的较合理的热塑性变形工艺区间为变形温度900~1000℃、应变速率0.04~0.16 s-1,在该变形条件下热压缩后的样品可获得更多的动态再结晶组织。  相似文献   

16.
对TC2钛合金的高温变形行为进行了有限元模拟和热压缩实验研究,使用有限元自洽模型模拟提高流动应力曲线修正精度,分析材料的应力应变曲线特征,得到其高温流动本构方程和激活能,并进行了光学显微镜观察研究其微观组织演变规律,发现在高温低应变速率下α相的球化程度较高。绘制出TC2钛合金的功率耗散图和热加工图,结合应变速率敏感系数m研究了受m值控制的不同变形机制,最终确定了TC2钛合金的最佳加工窗口:(I)760~825℃、0.007~0.024 s-1;(II)850~900℃、0.018~0.37 s-1;(III)900~950℃、1~10 s-1,在此区间功率耗散因子较大,在材料变形过程中发生充分动态再结晶,试样的微观组织呈细小等轴状。  相似文献   

17.
目的 研究GH3028镍基合金动态再结晶过程中的晶粒尺寸变化情况,明晰微观组织形貌的演变规律。方法 利用DST3000PC型动态热模拟实验机,在温度为1 050~1 300℃、应变速率为1×10-3~1×10-1 s-1、最大应变量为58%的条件下对GH3028镍基合金进行热压缩实验,通过构建动态再结晶和晶粒尺寸演变数值计算模型并结合实验进行验证。结果 峰值应力随温度的上升而有所下降,在1050~1300℃温度范围内,温度越高,合金试样越容易趋于稳态,动态再结晶特点越为明显。通过对实验数据进行优化和拟合,根据峰值应力值计算出热变形激活能Q为516 kJ/mol,进而求解出热变形方程。建立动态再结晶模型及晶粒尺寸模型,观察动态再结晶过程中的微观组织,发现当温度、应变速率不变时,动态再结晶的体积分数随应变量的增大而增大。温度的提升会显著增大动态再结晶体积分数和动态再结晶晶粒尺寸。晶粒尺寸受温度和应变速率的双重影响逐渐趋于稳态变化。结论 通过对模型预测值与实际实验数据进行对比,发现该模型可以实现对晶粒尺寸变化的预测,模型预测平...  相似文献   

18.
采用Gleeble-1500D热力模拟试验机研究新型Al-Zn-Mg-Cu高强铝合金在变形温度为300~450℃,应变速率为0.001~10s~(-1)条件下的热变形组织演化。利用光学显微镜(OM)和透射电子显微镜(TEM)观察合金不同热变形条件下的组织形貌特征。结果表明:随着变形温度的升高和应变速率的减小,位错密度减小,亚晶粒尺寸增大;合金热压缩变形过程中主要的软化机制为动态回复和动态再结晶。变形温度为300~400℃时,主要发生动态回复;变形温度为450℃,应变速率为0.001~10s~(-1)时,软化机制以动态再结晶为主,存在晶界弓出、亚晶长大、亚晶合并3种再结晶形核机制。  相似文献   

19.
以Ti2AlNb合金板材为研究对象,基于变形温度为1 273~1 423 K、应变速率为0.001~10 s-1范围内的等温恒应变速率热压缩实验,深入分析了变形参数和微观组织对应变速率敏感指数m和应变硬化指数n的影响。结果表明:Ti2AlNb合金的流动应力随变形温度的升高和应变速率的降低而减小;Ti2AlNb合金等温压缩过程中的峰值m为0.61,出现在1 323 K/0.001 s-1;当变形温度为1 273~1 323 K时,m随应变速率的增大而减小,当变形温度为1 373~1 423 K时,m随应变速率的增大而增大;当应变速率为0.001 s-1时,n随应变的增大呈现先减小后增大的趋势,而当应变速率为0.01~10 s-1时,n却呈现先增大后减小的变化趋势;Ti2AlNb合金应变硬化指数n值和应变速率敏感指数m值均随着晶粒尺寸的增大而减小;Ti2AlNb合金板材较优的加工区间为1 273...  相似文献   

20.
目的 研究Nb47Ti合金在变形温度为600~750℃、应变速率为0.001~1s?1条件下的热变形行为和微观组织。方法 采用Gleeble-3500型热/力模拟试验机进行等温恒应变速率压缩实验,获得Nb47Ti合金热变形的真应力应变曲线,并利用EBSD技术手段分析热变形后的微观组织。结果 Nb47Ti合金在变形温度小于650℃、应变速率小于0.1s?1下热变形的真应力-应变曲线为动态再结晶型曲线,变形温度大于等于700℃时呈现为动态回复型曲线;峰值应力随变形温度的升高和应变速率的减小而减小;在变形温度为650℃、应变速率为0.001 s?1下热变形组织以再结晶晶粒和亚晶粒为主,随着应变速率的增大,动态再结晶晶粒不断减少,而亚晶粒和变形晶粒增多,晶粒得到显著细化。当应变速率为0.1 s?1时,随着变形温度的增加,晶粒尺寸增大,变形温度升高至750℃,热变形组织中亚晶粒所占比例高达50.5%。结论 Nb47Ti合金是温度和正应变速率敏感材料,随变形温度的升高和应变速率的增大,变形过程中动态回复软化机制更为显著,低温、高应变速率下变形获得的再结晶晶粒尺寸小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号