共查询到20条相似文献,搜索用时 0 毫秒
1.
Shivkalyan A. Kanhegaokar Gao Chunji Eun‐Young Choi O‐Pil Kwon Suck‐Hyun Lee 《应用聚合物科学杂志》2011,120(2):1138-1144
New conducting thermally stable blends of polyaniline (PANi) with sulfonated poly(ether sulfone) as a matrix were prepared by a solution‐blending method. Camphorsulfonic acid (CSA) was used as a protonic agent for PANi. A sulfonyl group was introduced into the poly(ether sulfone) to enhance the coulomb interaction among the blends. The influence of the sulfonated group in poly(ether sulfone) was monitored with electrical property measurements. Ultraviolet–visible spectra of the blend compositions showed a well‐developed polaron band. The compatibility of the blends, that is, hydrogen bonding and dispersion at the molecular level, was ascertained with X‐ray diffraction and Fourier transform infrared (FTIR) spectroscopy; these supported intermolecular interaction. A smooth and uniform morphology was observed in the blends. The electrical conductivity of the blends increased up to 14 S/cm with the protonation of the PANi complex with CSA, and the percolation threshold was found to be 2 wt % PANi. These new blends showed increases in conductivity and compatibility over other PANi–poly(ether sulfone) blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
2.
We report on the chemical polymerization of 2‐methoxyaniline at the interface between an aqueous solution and air. The polymer is formed in the interfacial region, whereas the soluble trimer is yielded in the bulk of the polymerization solution. The preferential polymerization of 2‐methoxyaniline is discussed in terms of monomer and oligomer accumulation at the interface, which influences the reactivity of these species and allows further polymerization. The phenomenon of polymer growth is employed to selectively deposit polymeric material onto glass slides decorated with gas microbubbles. Because of preferential polymerization at the bubble/solution interface, hemispherical features are produced on the surface of glass. When some polymeric material is mechanically removed, microrings or microholes are obtained. The anomalous polymerization of 2‐methoxyaniline is compared to that of 2‐methylaniline. This monomer polymerizes uniformly within the entire volume of the reaction mixture; thus, no preferential polymer formation at the gas/solution interface is observed. As a result, deposition on microbubble‐decorated glass slides produces polymeric films containing a number of microholes. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
3.
Bjørn Winther‐Jensen Noel Clark Priya Subramanian Richard Helmer Syed Ashraf Gordon Wallace Leone Spiccia Douglas MacFarlane 《应用聚合物科学杂志》2007,104(6):3938-3947
Conducting polymers such as polypyrrole may be useful in smart packaging products, provided application methods can be developed that circumvent the insolubility and infusibility of these materials. Experiments were conducted in five research areas relevant to the application of polypyrrole to nonrigid substrates. The studies reveal that application of polypyrrole from the liquid phase, either by deposition from depleted bulk solution or inkjet printing dispersions, is unlikely to give films as regular as those produced by vapor phase polymerization. Using the latter approach, two potential methods of applying patterned polypyrrole films to nonrigid substrates were developed. The first used hypochlorite to pattern a continuous film of polypyrrole, previously applied by vapor phase polymerization. The second used inkjet printing to apply an oxidant solution, whose pH had been raised with a volatile base, to nonrigid substrates. The higher pH reduced corrosion of the print head, increasing the lifetime of printers exposed to oxidative compounds. The base was subsequently evaporated by heating, and the dried oxidant used as a template for vapor phase polymerization of polypyrrole. This method gave smooth, shiny and adherent polypyrrole films on papers and polyester transparency, with high resolution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3938–3947, 2007 相似文献
4.
Hollow polyaniline microspheres (HMsPANI) for supercapacitors were prepared successfully with sulfonated polystyrene microspheres as the template. The prepared electrode materials of HMsPANI consisted of nanoparticles and, thus, had a hierarchical structure. The electrochemical behaviors of the materials were investigated with cyclic voltammetry and galvanostatic charge–discharge tests. A maximum specific capacitance of 421 F/g was achieved in a 1M H2SO4 solution, with the potential ranging from ?0.2 to 0.8 V (vs a saturated calomel electrode), in a three‐electrode glass cell at room temperature for the HMsPANI electrode. This suggested its potential application in electrochemical capacitors. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
5.
In the present study, we demonstrate the development of novel electromagnetic interference shielding material from the composite of nanostructured polyaniline‐polyhydroxy iron‐clay and polycarbonate through solution blending process. Onset of percolation threshold has been manifested from the morphological studies in combination with electrical conductivity measurements. Temperature‐dependent electrical conduction mechanism was studied by applying Mott theory and was found to follow 3D variable range hopping (VRH) model. The presence of interaction between the host matrix and the nanofiller was studied by rheological property measurement in combination with Fourier transform infrared spectroscopy. Films were further characterized for electromagnetic interference (EMI) shielding efficiency and thermomechanical properties. Results suggest that these transparent composite films can be used for the fabrication of EMI shielding/electrostatic dissipation material for the encapsulation of electronic devices and as electrostatic material for high technological applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
6.
Percolation theory predicts the ideal percolation threshold (PC) for insulator/conductor composites (ICC) to be at 0.16 of the conductor volume fraction in the composite. In this article, we have investigated the percolation behavior in polyvinylidene fluoride/nickel (Ni) composites by varying the Ni concentration. It is observed that the thermal effect/time of heat treatment play a crucial role in changing the value of PC in a simple random continuum percolative ICC. The effect is attributed to decrease in: (i) intercluster distance, (ii) viscosity of the polymer, and (iii) wetting of the polymer to metal. The heat energy helps the polymer matrix to be melted as a result the metal particles/clusters come closure, that causes an increase in the cluster size of the metal particles. The overall effect is lowering of PC mainly due to decrease in intercluster distance. A drastic enhancement in the dielectric permittivity with increase of metal content is explained using boundary layer capacitive effect arising due to Maxwell–Wagner–Sillars interfacial polarization of accumulated charges at the metal–polymer interfaces and blocking of charge carriers at the insulating boundary. The substantial enhancement of ac conductivity at the PC is attributed to leakage of charge carriers across the insulating barrier. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
7.
Composites of polyaniline (PANI) nanorods and multiwalled carbon nanotubes (MWNTs) coated with PANI were prepared by in situ polymerization with perchloric acid as a dopant. Transmission electron microscopy images showed that the coexisting composites of PANI nanorods and MWNTs coated with PANI were formed at low MWNT contents. The interaction between MWNTs and PANI was proved by Fourier transform infrared and ultraviolet–visible spectra. The electrical conductivity of a dedoped PANI/MWNT composite with a 16.3 wt % concentration of MWNTs reached 3.0 × 10?3 S/cm, which was 6 orders of magnitude higher than that of dedoped PANInanorods. The results also showed that coexisting composites of PANI nanorods and MWNTs coated with PANI had high electrochemical activity and good cyclic stability. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 相似文献
8.
We present a non-covalent compatibilization approach to prepare polypropylene (PP) composites containing expanded graphite (EG) and graphene nanoplatelets (GNPs) by melt compounding. This method involves PP matrix functionalization with pyridine (Py) moieties, which are capable of engaging in π-π interactions with the surface of the EG and GNPs. The addition of 10 wt% of PP grafted with amino-pyridine (PP-g-Py) to neat PP facilitated the break-up of EG particles, by intercalating between their layers and facilitating their separation into smaller tactoids. GNPs were prepared starting from EG through a thermomechanical exfoliation method. Addition of GNPs to PP resulted in well-dispersed platelets having aspect ratios as high as 40, whereas in the presence of the PP-g-Py compatibilizer the matrix contained sub-micron scale platelets. The electrical percolation thresholds were in the vicinity of 6 and 10 vol% in the compatibilized PP-EG and PP-GNP composites, respectively, and the maximum value of the electrical conductivity achieved was 10−1 S/m for the compatibilized GNP composites. Addition of GNPs resulted in increases in the flexural moduli by as much as 95% compared to the unfilled PP, whereas the impact strength remained unaffected up to 10 wt% GNP content. 相似文献
9.
Woo‐Hyuk Jung Yeon‐Sil Choi Jung‐Min Moon Sang‐Cheol Han Yang Kim Jang‐Oo Lee 《应用聚合物科学杂志》2010,117(2):996-1004
Rod‐like or needle‐like particles of polyanilinium p‐toluene sulfonate have been used as templates for the formation of silica microcapsules or microtubes. Thus, an alkaline aqueous suspension of the needles was treated with tetraethyl orthosilicate to form silica‐coated needles, which were subsequently calcined to remove the polyanilinium templates. The rod‐like or needle‐like polyaniline particles, their silica‐coated derivatives and silica microcapsules or microtubes have been characterized by thermogravimetric analysis, Fourier transformation infrared spectroscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FE‐SEM), and transmission electron microscopy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
10.
A highly ionic conductive solid‐gel membrane based on polyacrylamide hydrogels with a K2CO3 additive was investigated. The polymer‐based gel was prepared by adding ionic species K2CO3 to a monomer solution followed by polymerization. After polymerization, the ionic species was embedded in the polymer‐based gel, where it remained. The ionic species behaved like a liquid electrolyte, whereas the polymer‐based solid‐gel membrane provided a smooth impenetrable surface that allowed for the exchange of ions. The gel membranes were obtained in the form of thin films of reasonable mechanical strength. Their ambient temperature conductivities were in the range 10?2 to 10?1 S/cm. The effect of K2CO3 concentration on the conductivity of the gels prepared was examined in the temperature range from 0 to 100°C. The microstructure and chemical composition of the gels studied were characterized by environmental scanning electron microscopy and FTIR, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2076–2081, 2004 相似文献
11.
Polythiophene (PTh) films were prepared by the electrochemical polymerization of thiophene in acetonitrile solution with boron fluoride–ethyl ether (BFEE) as the electrolyte. The electropolymerization processes were investigated by cyclic voltammetry. The onset potential of the electropolymerization decreased dramatically with increasing BFEE proportion in the solution. The free‐standing PTh films obtained were characterized by Founier transform infrared spectroscopy, scanning electron microscopy, and X‐ray photoelectron microscopy. The influence of BFEE on the morphology and conductivity of the PTh films was also examined. The binary solvent solution consisted of acetonitrile (10 vol %) and BFEE (90 vol %), which turned out to be the optimal electrosythesis system, in which a current density of 1 mA/cm2 and a monomer concentration of 50 mM were the optimal conditions for electropolymerization. The PTh film obtained under the optimized conditions had a high tensile strength of 60 MPa and a high conductivity of 153 S/cm. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 940–946, 2003 相似文献
12.
Bjørn Winther‐Jensen Tobias Knecht Chun Ong Jitraporn Vongsvivut Noel Clark 《大分子材料与工程》2011,296(2):185-189
Low‐MW urethanes were investigated to control domain formation as well as inhibiting cleavage reactions during vapor phase polymerization of PEDOT. A diurethanediol (DUDO) was identified as a highly efficient mediator for the process, resulting in PEDOT films exceeding conductivities of 1 000 S · cm?1. All the urethanes investigated had the desired inhibiting effect on the polymerization, but all apart from DUDO also introduced unwanted domain formation on the micrometer scale. The addition of PEG generally improved conductivity by suppressing the domain formation and, with an optimized combination of DUDO and PEG, conductivities over 1 200 S · cm?1 were achieved.
13.
An analogue of disubstituted 3,4‐propylenedioxythiophenes, namely 3,3‐bis(cyclohexylmethyl)‐3,4‐dihydro‐2H‐thieno[3,4‐b][1,4]dioxepin (ProDOT‐CycHex2), was synthesized and its electrochemical polymerization was carried out successfully in an electrolyte solution of 0.1 M tetrabutylammonium hexafluorophosphate dissolved in a mixture of acetonitrile and dichloromethane (3/1: v/v). The corresponding polymer called PProDOT‐CycHex2 has a reduced band gap of 1.85 eV and an electrochromic property: blue/violet when neutralized and highly transparent when oxidized. Also, PProDOT‐CycHex2 film exhibited faster response time (0.7 s) and higher coloration efficiency (769 cm2/C) during oxidation when compared to its benzyl substituted analogue. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46214. 相似文献
14.
Thin films of poly(o‐anisidine) (POA), poly(o‐toluidine) (POT), and their copolymer poly(o‐anisidine‐co‐o‐toluidine) (POA‐co‐POT) were electropolymerized in solutions containing 0.1M monomer(s) and 1M H2SO4 as an electrolyte through the application of a sequential linear potential scanning rate of 50 mV/s between ?0.2 and 1.0 V versus an Ag/AgCl electrode on a platinum electrode. A simple technique was used to construct glucose sensors through the entrapment of glucose oxidase (GOD) in thin films of POA, POT, and their copolymer POA‐co‐POT, which were electrochemically deposited on a platinum plate in phosphate and acetate buffers. The maximum current response was observed for POA, POT, and POA‐co‐POT GOD electrodes at pH 5.5 and at a potential of 0.60 V (vs Ag/AgCl). The phosphate buffer yielded a fast response in comparison with the acetate buffer in amperometric measurements. The POT GOD electrode showed a fast response and was followed by POA‐co‐POT and POA GOD electrodes. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1877–1884, 2004 相似文献
15.
Thiophene copolymers and their derivatives with poly(ethylene oxide) side chains were synthesized. The starting monomers were 3‐hexylthiophene and 2‐(3‐thienyl) ethanol with poly(ethylene oxide) grafted to the side chains. New functionalized polythiophenes were prepared by both chemical oxidation with FeCl3 and electropolymerization. The conjugating polymers were characterized. The structures of the polythiophene derivatives agreed with the design. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1803–1808, 2006 相似文献
16.
The corrosion‐protection aspects of poly(o‐anisidine) (POA) coatings on mild steel in aqueous 3% NaCl solutions were investigated with electrochemical impedance spectroscopy, a potentiodynamic polarization technique, and open circuit potential measurements. The POA coatings were electrochemically synthesized on mild steel with cyclic voltammetry from an aqueous salicylate medium. The corrosion behavior of the POA coatings was investigated through immersion tests performed in aqueous 3% NaCl solutions, and the recorded electrochemical impedance spectra were fitted with an equivalent circuit to obtain the characteristic impedance parameters. The use of a single equivalent circuit was inadequate to explain the various physical and electrochemical processes occurring at different exposure times. It was suggested that some characteristic element(s) should be incorporated into the equivalent circuit at different stages of the immersion to elucidate the various processes occurring at different exposure times. The evolution of the impedance parameters with the immersion time was studied, and the results showed that POA acted as a protective coating on the mild steel against corrosion in a 3% NaCl solution. From these data, the water uptake and delamination area were determined to further support the corrosion‐protection performance of the POA coating. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
17.
The treatment of graphene oxide having 4-aminophenyl groups (GO-AP) with (NH4)2S2O8 yielded an ammonium radical cation (GO-AP.+). The radical polymerization of N-(4-sulfopropyl)aniline (ANPrSO3H) and copolymerization of ANPrSO3H with aniline (AN) in the presence of GO-AP.+ yielded water-soluble GO composites that were grafted with poly(N-(4-sulfopropyl)aniline) and poly(N-(4-sulfopropyl)aniline-co-aniline), namely, GO-AP-PANPrSO3H and GO-AP-PAN/PANPrSO3H, respectively. The formation of the composites consisted of GO, PAN, and PANPrSO3H chains that were bonded to the amino group of GO-AP, confirmed by Raman spectroscopy, differential scanning calorimetry, and scanning electron microscopy analyses. The UV-vis measurements suggested that the polymer chains of the composites were self-doped by the sulfonic acid group and de-doped by sodium sulfonation. The composites exhibited photoluminescence resulting from the polymer chain and GO depending on the excitation wavelength. They underwent electrochemical oxidation of the polymer backbone and reduction of the carbonyl groups. 相似文献
18.
Preparation of zero‐dimensional and one‐dimensional nanostructures of polyaniline (PANI) were achieved by using swollen liquid crystals (SLCs) as ‘soft' templates. The monomer (aniline) was first entrapped in SLCs by replacing the oil phase (cyclohexane) with a mixture of aniline and cyclohexane. Zero‐dimensional nanostructures of PANI were obtained by thorough mixing of APS with the mesophases. One‐dimensional nanostructures were prepared by allowing slow diffusion of APS through the mesophase. PANI nanostructures were extracted from the mesophase and were characterized by UV‐visible spectroscopy, FTIR spectroscopy, powder X‐ray diffraction, atomic force microscopy, scanning electron microscopy (SEM), and conductivity measurements. A plausible mechanism for the formation of the nanostructures has been proposed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40800. 相似文献
19.
Morphology control is an important issue for boosting the performance of organic bulk‐heterojunction (BHJ) solar cells. In this study, we investigated the correlation between alcohol solvents and the morphologies of poly({4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′] dithiophene‐2,6‐diyl}{3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl}) (PTB7) and [6,6]‐phenyl‐C70‐butyric acid methyl ester (PC70BM)‐based organic solar cells by spin‐casting the alcohol onto the active layers. We found that the morphologies strongly depended on the structure of the alcohol [alkyl chain length and hydroxyl (? OH) group position]. Ethanol or 2‐propanol showed the highest performance among the alcohols considered here. Atomic force microscopy images and absorption spectra demonstrated that the alcohols affected the morphologies of PC70BM rather than those of PTB7. The morphologies of PC70BM were dependent on the solubilities of the alcohols to the active layers and the hydrogen‐bonding strengths between the PC70BM and alcohol molecules. Our results indicate that the use of alcohols for solvent annealing is a simple and efficient method for developing high‐performance organic BHJ solar cells. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 44367. 相似文献
20.
Dulse‐derived porous carbon (DDPC)–polyaniline (PANI) nanocomposites were fabricated by a method based on the in situ chemical oxidation polymerization of aniline on DDPC. The characterization of the material showed that the nano‐PANI was grown on the surface of DDPC in the form of nanosticks or nanoparticles. The DDPC–PANI nanocomposites were further used as electrode materials for energy‐storage applications. Meanwhile, the effect of the amount of aniline on the electrochemical performance of DDPC–PANI was also investigated. The results show that a maximum specific capacitance of 458 F/g was achieved for the DDPC–PANI nanocomposites; this was higher than that of the DDPC electrode (218 F/g), and the PANI electrode (318 F/g). The specific capacitance of DDPC–PANI remained 66.0% of the initial value after 5000 cycles; this was higher than that of PANI (50.5%). Finally, a device of DDPC–PANI–activated carbon (AC) was assembled with DDPC–PANI as a positive electrode, which exhibited a high energy density of 9.02 W h/kg, which was higher than that of PANI–AC device. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45776. 相似文献