首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We demonstrate that the hole mobility in regioregular poly(3‐hexylthiophene) can be enhanced by a factor of 20 by infiltrating it into straight nanopores of anodic alumina. Optical characterization shows that the polymer chains are partially aligned in the charge‐transport direction.  相似文献   

2.
The measurement of the mechanical properties of conjugated polymers can reveal highly relevant information linking optoelectronic properties to underlying microstructures and the knowledge of the glass transition temperature (Tg) is paramount for informing the choice of processing conditions and for interpreting the thermal stability of devices. In this work, we use dynamical mechanical analysis to determine the Tg of a range of state-of-the-art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field-effect transistors. We compare our measured values for Tg to the theoretical value predicted by a recent work based on the concept of effective mobility ζ. The comparison shows that for conjugated polymers with a modest length of the monomer units, the Tg values agree well with theoretically predictions. However, for the near-amorphous, indacenodithiophene–benzothiadiazole family of polymers with more extended backbone units, values for Tg appear to be significantly higher, predicted by theory. However, values for Tg are correlated with the sub-bandgap optical absorption suggesting the possible role of the interchain short contacts within materials’ amorphous domains.  相似文献   

3.
Conductive polymers largely derive their electronic functionality from chemical doping, processes by which redox and charge‐transfer reactions form mobile carriers. While decades of research have demonstrated fundamentally new technologies that merge the unique functionality of these materials with the chemical versatility of macromolecules, doping and the resultant material properties are not ideal for many applications. Here, it is demonstrated that open‐shell conjugated polymers comprised of alternating cyclopentadithiophene and thiadiazoloquinoxaline units can achieve high electrical conductivities in their native “undoped” form. Spectroscopic, electrochemical, electron paramagnetic resonance, and magnetic susceptibility measurements demonstrate that this donor–acceptor architecture promotes very narrow bandgaps, strong electronic correlations, high‐spin ground states, and long‐range π‐delocalization. A comparative study of structural variants and processing methodologies demonstrates that the conductivity can be tuned up to 8.18 S cm?1. This exceeds other neutral narrow bandgap conjugated polymers, many doped polymers, radical conductors, and is comparable to commercial grades of poly(styrene‐sulfonate)‐doped poly(3,4‐ethylenedioxythiophene). X‐ray and morphological studies trace the high conductivity to rigid backbone conformations emanating from strong π‐interactions and long‐range ordered structures formed through self‐organization that lead to a network of delocalized open‐shell sites in electronic communication. The results offer a new platform for the transport of charge in molecular systems.  相似文献   

4.
The solid‐state packing and polymer orientation relative to the substrate are key properties to control in order to achieve high charge carrier mobilities in organic field effect transistors (OFET). Intuitively, shorter side chains are expected to yield higher charge carrier mobilities because of a denser solid state packing motif and a higher ratio of charge transport moieties. However our findings suggest that the polymer chain orientation plays a crucial role in high‐performing diketopyrrolopyrrole‐based polymers. By synthesizing a series of DPP‐based polymers with different branched alkyl side chain lengths, it is shown that the polymer orientation depends on the branched alkyl chain lengths and that the highest carrier mobilities are obtained only if the polymer adopts a mixed face‐on/edge‐on orientation, which allows the formation of 3D carrier channels in an otherwise edge‐on‐oriented polymer chain network. Time‐of‐flight measurements performed on the various polymer films support this hypothesis by showing higher out‐of‐plane carrier mobilities for the partially face‐on‐oriented polymers. Additionally, a favorable morphology is mimicked by blending a face‐on polymer into an exclusively edge‐on oriented polymer, resulting in higher charge carrier mobilities and opening up a new avenue for the fabrication of high performing OFET devices.  相似文献   

5.
A new method has been developed to detect the formation of carbon–carbon bonds by Diels–Alder reactions based on the fluorescence quenching of conjugated polymers. Conjugated copolymers containing various amounts of functional furan pendant groups (PFP–F) have been synthesized and characterized. A maleimide group linked to 1‐methyl‐4,4‐bipyridinium iodide acts as the electron quencher (M–MV2+). The Diels–Alder reaction between the maleimide and furan moieties results in intramolecular electron transfer from the conjugated copolymer to the MV2+, and thus the fluorescence of the conjugated copolymer is quenched via a photoinduced electron transfer process. Higher furan concentrations increase the fluorescence quenching efficiency (EF) of the conjugated copolymers. The copolymer PFP–F3 with the highest furan content can be used as a platform to monitor Diels–Alder reactions. The PFP–F3/M–MV2+system can also be used to screen catalysts for Diels–Alder reactions.  相似文献   

6.
7.
One of the grand challenges in organic electronics is to develop multicomponent materials wherein each component imparts a different and independently addressable property to the hybrid system. In this way, the combination of the pristine properties of each component is not only preserved but also combined with unprecedented properties emerging from the mutual interaction between the components. Here for the first time, that tri‐component materials comprised of an ambipolar diketopyrrolopyrrole‐based semiconducting polymer combined with two different photochromic diarylethene molecules possessing ad hoc energy levels can be used to develop organic field‐effect transistors, in which the transport of both, holes and electrons, can be photo‐modulated. A fully reversible light‐switching process is demonstrated, with a light‐controlled 100‐fold modulation of p‐type charge transport and a tenfold modulation of n‐type charge transport. These findings pave the way for photo‐tunable inverters and ultimately for completely re‐addressable high‐performance circuits comprising optical storage units and ambipolar field‐effect transistors.  相似文献   

8.
The nature of charge carriers in recently developed high mobility semiconducting donor‐acceptor polymers is debated. Here, localization due to charge relaxation is investigated in a prototypal system, a good electron transporting naphthalenediimide based copolymer, by means of current‐voltage IV electrical characteristics and charge modulation spectroscopy (CMS) in top‐gate field‐effect transistors (FETs), combined with density functional theory (DFT) and time dependent DFT (TDDFT) calculations. In particular, pristine copolymer films are compared with films that underwent a melt‐annealing process, the latter leading to a drastic change of the microstructure. Despite the packing modification, which involves also the channel region, both the electron mobility and the energy of polaronic transitions are substantially unchanged upon melt‐annealing. The polaron absorption features can be rationalized and reproduced by TDDFT calculations for isolated charged oligomers. Therefore, it is concluded that in such a high electron mobility copolymer the charge transport process involves polaronic species which are intramolecular in nature and, from a more general point of view, that interchain delocalization of the polaron is not necessary to sustain charge mobilities in the 0.1 to 1 cm2 V 1 s–1 range. These findings contribute to the rationalization of the charge transport process in the recently developed class of donor‐acceptor π‐conjugated copolymers featuring high charge mobilities and complex morphologies.  相似文献   

9.
Photoinduced electron transfer and competing processes have been studied in composites of an oligo(thienylenevinylene) (OTV), comprised of ten dibuthoxyl‐thiophene units separated by vinylene units, and a C60 derivative, [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM), by using femtosecond transient absorption spectroscopy and sub‐nanosecond transient photoconductivity. We find that in OTV:PCBM the photoexcitations decay primarily via intrachain relaxation rather than photoinduced electron transfer from OTV to PCBM. The electron‐transfer process requires ca. 14 ps; larger by more than two orders of magnitude than the required time observed in conjugated‐polymer:C60 composites, and also larger than the 0.6 ps singlet‐state lifetime in OTV. These observations indicate that the quantum efficiency for photoinduced electron transfer in OTV:PCBM is less than 5 %.  相似文献   

10.
Herein, we report experimental studies of electron and hole transport in thin films of [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) and in blends of poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylenevinylene] (MDMO‐PPV) with PCBM. The low‐field hole mobility in pristine MDMO‐PPV is of the order of 10–7 cm2 V–1 s–1, in agreement with previous studies, whereas the electron mobility in pristine PCBM was found by current‐density–voltage (J–V) measurements to be of the order of 10–2 cm2 V–1 s–1, which is about one order of magnitude greater than previously reported. Adding PCBM to the blend increases both electron and hole mobilities, compared to the pristine polymer, and results in less dispersive hole transport. The hole mobility in a blend containing 67 wt.‐% PCBM is at least two orders of magnitude greater than in the pristine polymer. This result is independent of measurement technique and film thickness, indicating a true bulk property of the material. We therefore propose that PCBM may assist hole transport in the blend, either by participating in hole transport or by changing the polymer‐chain packing to enhance hole mobility. Time‐of‐flight mobility measurements of PCBM dispersed in a polystyrene matrix yield electron and hole mobilities of similar magnitude and relatively non‐dispersive transport. To the best of our knowledge, this is the first report of hole transport in a methanofullerene. We discuss the conditions under which hole transport in the fullerene phase of a polymer/fullerene blend may be expected. The relevance to photovoltaic device function is also discussed.  相似文献   

11.
Charge transport in the ribbon phase of poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (PBTTT)—one of the most highly ordered, chain‐extended crystalline microstructures available in a conjugated polymer semiconductor—is studied. Ribbon‐phase PBTTT has previously been found not to exhibit high carrier mobilities, but it is shown here that field‐effect mobilities depend strongly on the device architecture and active interface. When devices are constructed such that the ribbon‐phase films are in contact with either a polymer gate dielectric or an SiO2 gate dielectric modified by a hydrophobic, self‐assembled monolayer, high mobilities of up to 0.4 cm2 V?1 s?1 can be achieved, which is comparable to those observed previously in terrace‐phase PBTTT. In uniaxially aligned, zone‐cast films of ribbon‐phase PBTTT the mobility anisotropy is measured for transport both parallel and perpendicular to the polymer chain direction. The mobility anisotropy is relatively small, with the mobility along the polymer chain direction being higher by a factor of 3–5, consistent with the grain size encountered in the two transport directions.  相似文献   

12.
13.
The colorimetric stability upon thermal stress of a series of conjugated polymer supramolecules prepared from 10,12‐docosadiyndioic acid (DCDDA)‐derived diacetylene monomers has been explored. Polydiacetylenes obtained from DCDDA‐bis‐mBzA 3 , containing m‐carboxyphenylanilido groups at the both ends of the monomer, were observed to be highly colorimetrically stable upon thermal stimulation. The blue color of a solution containing these polydiacetylene vesicles remains unchanged even when the vesicles were subjected to boiling water. The unusual colorimetric stability is further demonstrated by the observation that blue color persists until vesicles in ethylene glycol are heated to 140 °C. The nature of this unusual thermal stability was elucidated by using polydiacetylene supramolecules, prepared from analogs of DCDDA‐bis‐mBzA 3 . The presence of internal amide groups as well as aromatic interactions was found to be essential for the high colorimetric stability of the polydiacetylene supramolecules.  相似文献   

14.
A series of novel electron transport (ET) polymers composed of different conjugated main chains (fluorene, thiophene, and 2,7‐carbazole) and crown ether side chain (crown ether, aza‐crown ether and amine) is presented for bulk‐heterojunction polymer solar cells with poly(3‐hexylthiophene) (P3HT) or poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo [1,2‐b:4,5‐b′] dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]](PTB7) as the active polymer and aluminum metal as the cathode. Unexpectedly, it is found that the main chain of ET polymers has a greater effect on the interfacial dipole than the side chain, even when attaching a high polarity group. The electron‐rich bridge atom of the main chain may also contribute appreciably to the interfacial dipole. When used as the ET layer, all of these polymers can generate an optical interference effect for redistribution of the optical electric field as an optical spacer and, therefore, allow more light to be absorbed by the active layer, thus leading to an increase in short‐circuit current density. They can also block hole diffusion to the cathode and prevent electron–hole recombination during the ET process. Among the five ET polymers investigated, PCCn6 is the most effective one, providing a remarkable improvement in the power conversion efficiency (measured in air) of the device to 8.13% compared to 5.20% for PTB7:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM).  相似文献   

15.
A molecular design strategy to achieve highly balanced ambipolar charge transport for donor–acceptor (D–A) isoindigo (IIG)‐based copolymer through systematic selection of fluorination positions is reported. To study fluorine substitution site effects on electronic and structural properties, two fluorinated IIG‐based copolymers (PIIG‐iFT2 and PIIG‐oFT2) are synthesized, which contain two fluorine atoms at the bithiophene (T2) inner and outer site and compare them with a nonfluorinated copolymer of IIG and T2 (PIIG‐T2) as the reference polymer. Fluorination at the outer site of T2 in PIIG‐oFT2 polymer effectively lowers molecular energy levels and increases molecular planarity more than fluorination at the T2 inner site. PIIG‐oFT2 organic field‐effect transistors show highly balanced ambipolar mobility, hole mobility (μh)/electron mobility (μe) = 1 by increasing electron mobility, whereas PIIG‐T2 (μhe = 9.0) and PIIG‐iFT2 (μhe = 2.4) exhibit unbalanced ambipolar transport. The ambipolar complementary‐like inverter is also demonstrated by simple one‐time coating of PIIG‐oFT2 with gain = 21.  相似文献   

16.
Blue‐light‐emitting diodes made of polyfluorenes have low stability and, under operation, rapidly degrade and produce undesirable low‐energy emission bands (green or g‐bands). A spectroelectrochemical study of the degradation process suffered by polyfluorenes is reported here. These polymers lose their electronic properties by electrochemical oxidation and reduction through σ‐bond breaking. In addition, upon electrochemical reduction, the development of a structured green emission band at 485 nm is observed. The position and shape of this band is different from the usual featureless band at 535 nm assigned to fluorenone defects. The green‐light‐emitting product is isolated and analyzed by Fourier‐transform IR spectroscopy; fluorenone formation is excluded. The isolated product is crosslinked; its green emission is probably related to the formation of an intramolecular excimer.  相似文献   

17.
A new alternating polyfluorene copolymer poly[2,7‐(9,9‐dioctylfluoren)‐alt‐5,5‐(5′,8′‐di‐2‐thienyl‐(2′,3′‐bis‐(3′′‐octyloxyphenyl)‐quinoxaline))] (APFO‐15), which has electron donor–acceptor–donor units in between the fluorene units, is synthesized and characterized. This polymer has a strong absorption and emission in the visible range of the solar spectrum. Its electroluminescence and photoluminescence emissions extend from about 560 to 900 nm. Moreover, solar cells with efficiencies in excess of 3.5 % have been realized from blends of APFO‐15 and an electron acceptor molecule, a methanofullerene [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). It has also been observed that electron and hole transport is balanced both in the pure polymer phase and in polymer/PCBM bulk heterojunction films, which makes this material quite attractive for applications in opto‐electronic devices.  相似文献   

18.
The photoconductive properties of a novel low‐bandgap conjugated polymer, poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole)], PCPDTBT, with an optical energy gap of Eg ~ 1.5 eV, have been studied. The results of photoluminescence and photoconductivity measurements indicate efficient electron transfer from PCPDTBT to PCBM ([6,6]‐phenyl‐C61 butyric acid methyl ester, a fullerene derivative), where PCPDTBT acts as the electron donor and PCBM as the electron acceptor. Electron‐transfer facilitates charge separation and results in prolonged carrier lifetime, as observed by fast (t > 100 ps) transient photoconductivity measurements. The photoresponsivities of PCPDTBT and PCPDTBT:PCBM are comparable to those of poly(3‐hexylthiophene), P3HT, and P3HT:PCBM, respectively. Moreover, the spectral sensitivity of PCPDTBT:PCBM extends significantly deeper into the infrared, to 900 nm, than that of P3HT. The potential of PCPDTBT as a material for high‐efficiency polymer solar cells is discussed.  相似文献   

19.
Ambipolar thin‐film transistors based on a series of air‐stable, solution‐processed blends of an n‐type polymer poly(benzobisimidazobenzophenanthroline) (BBL) and a p‐type small molecule, copper phthalocyanine (CuPc) are demonstrated, where all fabrication and measurements are performed under ambient conditions. The hole mobilities are in the range of 6.0 × 10–6 to 2.0 × 10–4 cm2 V–1 s–1 and electron mobilities are in the range of 2.0 × 10–6 to 3.0 × 10–5 cm2 V–1 s–1, depending on the blend composition. UV‐vis spectroscopy and electron diffraction show crystallization of CuPc in the metastable α‐crystal form within the semicrystalline BBL matrix. These CuPc domains develop into elongated ribbon‐like crystalline nanostructures when the blend films are processed in methanol, but not when they are processed in water. On methylene chloride vapor annealing of the blend films, a phase transformation of CuPc from the α‐form to the β‐form is observed, as shown by optical absorption spectroscopy and electron diffraction. Ambipolar charge transport is only observed in the blend films where CuPc crystallized in the elongated ribbon‐like nanostructures (α‐form). Ambipolar behavior is not observed with CuPc in the β‐polymorph. Unipolar hole mobilities as high as 2.0 × 10–3 cm2 V–1 s–1 are observed in these solution‐processed blend field‐effect transistors (FETs) on prolonged treatment in methanol, comparable to previously reported hole mobilities in thermally evaporated CuPc FETs. These results show that ambipolar charge transport and carrier mobilities in multicomponent organic semiconductors are intricately related to the phase‐separated nanoscale and crystalline morphology.  相似文献   

20.
Herein reported is the impact of the functionalization of four different semiconducting polymer structures by a linear siloxane-terminated side-chains. The latter is tetrasiloxane (Si4) or trisiloxane (Si3) chains, substituted at their extremity to a pentylene linker. The polymer structure is based on 5,6-difluorobenzothiadiazole comonomer (PF2), a diketopyrrolopyrrole unit (PDPP-TT), a naphtalediimide unit (PNDI-T2), and a poly[bis(thiophen-2-yl)thieno[3,2,b]thiophene (PBTTT). The properties of these siloxane-functionalized polymers are scrutinized and compared with the ones of their alkyl-substituted polymer analogues. The impact of the alkyl-to-siloxane chain substitution clearly depends on the molecular section of the side chains. When a branched 2-octyldodecyl chain (C20) is replaced by a Si4 chain of same molecular section, the greatest impact is the strong increase of the π-stacking overlap of the polymer backbones. This effect leads to a significative enhancement of the charge mobility values of the polymers. As in-plane and out-of-plane mobility are increased simultaneously, this π-overlap enhancement effect happens to be preponderant over the polymer orientation variations. When a linear tetradecyl chain (C14) is replaced by a linear Si3 chain of twice larger molecular section, the polymer structure is profoundly affected. While PBTTT-C14 is crystalline and purely edge-on, PBTTT-Si3 is mesomorphic and shows a mixed face-on/edge-on orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号