首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irradiation of 2D sheets of transition metal dichalcogenides with ion beams has emerged as an effective approach to engineer chemically active defects in 2D materials. In this context, argon‐ion bombardment has been utilized to introduce sulfur vacancies in monolayer molybdenum disulfide (MoS2). However, a detailed understanding of the effects of generated defects on the functional properties of 2D MoS2 is still lacking. In this work, the correlation between critical electronic device parameters and the density of sulfur vacancies is systematically investigated through the fabrication and characterization of back‐gated monolayer MoS2 field‐effect transistors (FETs) exposed to a variable fluence of low‐energy argon ions. The electrical properties of pristine and ion‐irradiated FETs can be largely improved/recovered by exposing the devices to vapors of short linear thiolated molecules. Such a solvent‐free chemical treatment—carried out strictly under inert atmosphere—rules out secondary healing effects induced by oxygen or oxygen‐containing molecules. The results provide a guideline to design monolayer MoS2 optoelectronic devices with a controlled density of sulfur vacancies, which can be further exploited to introduce ad hoc molecular functionalities by means of thiol chemistry approaches.  相似文献   

2.
This study uses a novel surface engineering approach to demonstrate the influence of organic functional group substitutions on molecular electronic properties. Specifically, bilayered organic monomolecular systems immobilized on an inorganic electrode as the charge‐injecting components of organic electronic devices are compared. Recent literature reports demonstrate that structural modification in functional monolayers have unpredictable effects on their electronic properties. These studies indicate that the structure most certainly plays an important role, but its effect on the molecular resistance is diminished due to differences in other monolayer parameters. It is demonstrated that a separate control over the monolayer geometry and its chemical structure is required in order to observe predictable structure‐property relations. Here, bilayered molecular interfaces, comprising inert and functional layers whose properties can be independently controlled, are formed. It is shown that 1) the charge transfer through the bilayered system is sensitive to small structural molecular changes; 2) that it can be controlled and predicted by controlling the electron‐withdrawing or donating nature of the organic moiety; and 3) that the differences in the charge transfer dynamics of two bilayered systems can be visualized via patterned electroluminescence.  相似文献   

3.
4.
Self‐assembled monolayers of organic, conjugated molecules can be used as active components of field‐effect transistors. The length of the molecule can define critical device dimensions with high precision on the nanometer scale. Transistor effects on the molecular‐scale as well as in devices consisting of single active molecules have been demonstrated. The observed device performance indicates that such transistors might be useful for switching and amplifying electrical signals in logic circuits. Moreover, functionalizing the organic molecules reveals that different parts of the molecule can act as gate insulator or the active component of transistors. Such research might pave the way to molecular electronic applications.  相似文献   

5.
Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large‐area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large‐scale and highly crystalline molybdenum disulfide monolayers using a solution‐processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full‐width‐half‐maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS2/WS2 heterojunction devices are easily prepared using this synthetic procedure due to the large‐sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW?1) because of the built‐in potential and the majority‐carrier transport at the n–n junction. These findings indicate an efficient pathway for the fabrication of high‐performance 2D optoelectronic devices.  相似文献   

6.
Layered materials with phase transitions, such as charge density wave (CDW) and magnetic and dipole ordering, have potential to be exfoliated into monolayers and few‐layers and then become a large and important subfamily of two‐dimensional (2D) materials. Benefitting from enriched physical properties from the collective interactions, long‐range ordering, and related phase transitions, as well as the atomic thickness yet having nondangling bonds on the surface, 2D phase‐transition materials have vast potential for use in new‐concept and functional devices. Here, potential 2D phase‐transition materials with CDWs and magnetic and dipole ordering, including transition metal dichalcogenides, transition metal halides, metal thio/selenophosphates, chromium silicon/germanium tellurides, and more, are introduced. The structures and experimental phase‐transition properties are summarized for the bulk materials and some of the obtained monolayers. In addition, recent experimental progress on the synthesis and measurement of monolayers, such as 1T‐TaS2, CrI3, and Cr2Ge2Te6, is reviewed.  相似文献   

7.
Wafer‐scale fabrication of high‐performance uniform organic electronic materials is of great challenge and has rarely been realized before. Previous large‐scale fabrication methods always lead to different layer thickness and thereby poor film and device uniformity. Herein, the first demonstration of 4 in. wafer‐scale, uniform, and high‐performance n‐type polymer monolayer films is reported, enabled by controlling the multi‐level self‐assembly process of conjugated polymers in solution. Since the self‐assembly process happened in solution, the uniform 2D polymer monolayers can be facilely deposited on various substrates, and theoretically without size limitations. Polymer monolayer transistors exhibit high electron mobilities of up to 1.88 cm2 V?1 s?1, which is among the highest in n‐type monolayer organic transistors. This method allows to easily fabricate n‐type conjugated polymers with wafer‐scale, high uniformity, low contact resistance, and excellent transistor performance (better than the traditional spin‐coating method). This work provides an effective strategy to prepare large‐scale and uniform 2D polymer monolayers, which could enable the application of conjugated polymers for wafer‐scale sophisticated electronics.  相似文献   

8.
A central vision in molecular electronics is the creation of devices with functional molecular components that may provide unique properties. Proteins are attractive candidates for this purpose, as they have specific physical (optical, electrical) and chemical (selective binding, self‐assembly) functions and offer a myriad of possibilities for (bio‐)chemical modification. This Progress Report focuses on proteins as potential building components for future bioelectronic devices as they are quite efficient electronic conductors, compared with saturated organic molecules. The report addresses several questions: how general is this behavior; how does protein conduction compare with that of saturated and conjugated molecules; and what mechanisms enable efficient conduction across these large molecules? To answer these questions results of nanometer‐scale and macroscopic electronic transport measurements across a range of organic molecules and proteins are compiled and analyzed, from single/few molecules to large molecular ensembles, and the influence of measurement methods on the results is considered. Generalizing, it is found that proteins conduct better than saturated molecules, and somewhat poorer than conjugated molecules. Significantly, the presence of cofactors (redox‐active or conjugated) in the protein enhances their conduction, but without an obvious advantage for natural electron transfer proteins. Most likely, the conduction mechanisms are hopping (at higher temperatures) and tunneling (below ca. 150–200 K).  相似文献   

9.
It is generally considered almost impossible to make Langmuir-Blodgett “built-up” multilayer films of conjugated (aromatic) molecules unless their aromaticity is very heavily diluted with aliphatic substituents or molecules; this severely limits the scientific and technological applications of such films. For example, even to handle anthracene-derivative monolayers on water (without any attempt to transfer them to a substrate) has in the past required the anthracene to be substituted with an aliphatic side chain containing at least twelve carbon atoms; this prevents instability of the water-borne monolayer. As a result, the interesting and useful electrical and optical properties which conjugated multilayers would be expected to possess (because of the extended molecular π electron systems) are heavily diluted by aliphatic properties. We now report the successful deposition of high quality multilayers of lightly substituted anthracene derivatives, with aliphatic side chains as short as four CH2 units. Improved techniques may well permit even shorter side chains to be used. We describe the deposition methods in detail and give experimental evidence that high quality films from one monolayer thick (about 1.5 nm) to 500 monolayers were indeed obtained; the interesting electrical and optical properties of these films, and their unique structure, will be discussed in detail at a later date. If these preparation techniques can be extended to other conjugated systems, as seems likely, the range of highly organized structures which can be constructed by the Langmuir-Blodgett method has been greatly increased, and the prospects for its technological use (in applications ranging from electronic devices to high temperature superconductors) have been improved.  相似文献   

10.
Monolayers of methyl-undecanoate were constructed on silicon surfaces via a covalent Si-C bond. The molecular monolayers were characterized by high resolution electrical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and ellipsometry and displayed a densely packed monolayer. After formation of the monolayer, the methyl ester was hydrolyzed without noticeable change in the integrity of the monolayer. The carboxyl terminated organic layer was then reacted with (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide to form active N-hydroxy succinimide ester groups. The activation chemistry was confirmed by XPS and the substructure of the methyl-undecanoate carboxylic acid and the N-hydroxy succinimide ester terminated films were characterized using EIS. XPS and EIS spectra provided information on the chemical composition and substructure of the monolayers for each step in the chemical modification of the surface.  相似文献   

11.
Optical and electrical properties of 2D transition metal dichalcogenides (TMDCs) grown by chemical vapor deposition (CVD) are strongly determined by their microstructure. Consequently, the visualization of spatial structural variations is of paramount importance for future applications. This study demonstrates how grain boundaries, crystal orientation, and strain fields can unambiguously be identified with combined lateral force microscopy and transverse shear microscopy (TSM) for CVD‐grown tungsten disulfide (WS2) monolayers, on length scales that are relevant for optoelectronic applications. Further, angle‐dependent TSM measurements enable the fourth‐order elastic constants of monolayer WS2 to be acquired experimentally. The results facilitate high‐throughput and nondestructive microstructure visualization of monolayer TMDCs and insights into their elastic properties, thus providing an accessible tool to support the development of advanced optoelectronic devices based on such 2D semiconductors.  相似文献   

12.
Though generally considered insulating, recent progress on the discovery of conductive porous metal–organic frameworks (MOFs) offers new opportunities for their integration as electroactive components in electronic devices. Compared to classical semiconductors, these metal–organic hybrids combine the crystallinity of inorganic materials with easier chemical functionalization and processability. Still, future development depends on the ability to produce high‐quality films with fine control over their orientation, crystallinity, homogeneity, and thickness. Here self‐assembled monolayer substrate modification and bottom‐up techniques are used to produce preferentially oriented, ultrathin, conductive films of Cu‐CAT‐1. The approach permits to fabricate and study the electrical response of MOF‐based devices incorporating the thinnest MOF film reported thus far (10 nm thick).  相似文献   

13.
Manufacturing high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high‐performance organic electronic and optoelectronic devices relies on high‐quality single crystals that show optimal intrinsic charge‐transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high‐performance organic integrated electronics are also addressed.  相似文献   

14.
Although an isolated individual molecule clearly has only one ionization potential, multiple values are found for molecules in ordered assemblies. Photoelectron spectroscopy of archetypical pi-conjugated organic compounds on metal substrates combined with first-principles calculations and electrostatic modelling reveal the existence of a surface dipole built into molecular layers. Conceptually different from the surface dipole at metal surfaces, its origin lies in details of the molecular electronic structure and its magnitude depends on the orientation of molecules relative to the surface of an ordered assembly. Suitable pre-patterning of substrates to induce specific molecular orientations in subsequently grown films thus permits adjusting the ionization potential of one molecular species over up to 0.6 eV via control over monolayer morphology. In addition to providing in-depth understanding of this phenomenon, our study offers design guidelines for improved organic-organic heterojunctions, hole- or electron-blocking layers and reduced barriers for charge-carrier injection in organic electronic devices.  相似文献   

15.
Reproducible molecular junctions can be integrated within standard CMOS technology. Metal–molecule–semiconductor junctions are fabricated by direct Si–C binding of hexadecane or methyl‐styrene onto oxide‐free H‐Si(111) surfaces, with the lateral size of the junctions defined by an etched SiO2 well and with evaporated Pb as the top contact. The current density, J, is highly reproducible with a standard deviation in log(J) of 0.2 over a junction diameter change from 3 to 100 μm. Reproducibility over such a large range indicates that transport is truly across the molecules and does not result from artifacts like edge effects or defects in the molecular monolayer. Device fabrication is tested for two n‐Si doping levels. With highly doped Si, transport is dominated by tunneling and reveals sharp conductance onsets at room temperature. Using the temperature dependence of current across medium‐doped n‐Si, the molecular tunneling barrier can be separated from the Si‐Schottky one, which is a 0.47 eV, in agreement with the molecular‐modified surface dipole and quite different from the bare Si–H junction. This indicates that Pb evaporation does not cause significant chemical changes to the molecules. The ability to manufacture reliable devices constitutes important progress toward possible future hybrid Si‐based molecular electronics.  相似文献   

16.
Functionalized molecules that organize to self-assembled monolayers (SAMs) are gaining importance in organic electronic devices. They are fully compatible with flexible substrates, are amenable to low-cost processing, and show reliable film-forming behavior. Highly integrated devices, such as sensor arrays or memories, have also been demonstrated. Starting from auxiliary layers, which improve and modify surfaces and interfaces in traditional thin-film devices, the applications of SAMs develop towards molecular scale electronics, including active molecular device layers and multifunctional SAMs, which fulfill several layer functions of a device within one monolayer. Mixed SAMs make new and tunable device features possible, by stoichiometric control of the composition of different SAM-forming molecules.  相似文献   

17.
An insight into the analogies, state‐of‐the‐art technologies, concepts, and prospects under the umbrella of perovskite materials (both inorganic–organic hybrid halide perovskites and ferroelectric perovskites) for future multifunctional energy conversion and storage devices is provided. Often, these are considered entirely different branches of research; however, considering them simultaneously and holistically can provide several new opportunities. Recent advancements have highlighted the potential of hybrid perovskites for high‐efficiency solar cells. The intrinsic polar properties of these materials, including the potential for ferroelectricity, provide additional possibilities for simultaneously exploiting several energy conversion mechanisms such as the piezoelectric, pyroelectric, and thermoelectric effect and electrical energy storage. The presence of these phenomena can support the performance of perovskite solar cells. The energy conversion using these effects (piezo‐, pyro‐, and thermoelectric effect) can also be enhanced by a change in the light intensity. Thus, there lies a range of possibilities for tuning the structural, electronic, optical, and magnetic properties of perovskites to simultaneously harvest energy using more than one mechanism to realize an improved efficiency. This requires a basic understanding of concepts, mechanisms, corresponding material properties, and the underlying physics involved with these effects.  相似文献   

18.
Nascent molecular electronic devices, based on monolayer Langmuir–Blodgett films sandwiched between two carbonaceous electrodes, have been prepared. Tightly packed monolayers of 4‐((4‐((4‐ethynylphenyl)ethynyl)phenyl)ethynyl)benzoic acid are deposited onto a highly oriented pyrolytic graphite electrode. An amorphous carbon top contact electrode is formed on top of the monolayer from a naphthalene precursor using the focused electron beam induced deposition technique. This allows the deposition of a carbon top‐contact electrode with well‐defined shape, thickness, and precise positioning on the film with nm resolution. These results represent a substantial step toward the realization of integrated molecular electronic devices based on monolayers and carbon electrodes.  相似文献   

19.
The origin of the interface formation appearing due to the realization of contacts to ultrathin gold nanowire devices is revealed. Such interfaces play an important role in transport mechanisms in nanowire structures and can determine the electrical and operating parameters of a nanodevice. Based on experimental results, the specific electrical properties of bundles of ultrathin gold nanowires fabricated by wet chemical synthesis and subsequently assembled and contacted with gold electrodes are reported. It is demonstrated that these properties are strongly affected by the monolayers of organic molecules inevitably present on the surface of the nanowires due to synthetic conditions. In particular, such layers form a potential barrier to tunneling of the electrons from contacts to the nanowires. The electric transport behavior of the investigated nanowire structures in the temperature range from 500 mK to 300 K obeys the model of thermal fluctuation‐induced tunneling conduction through the nanowire‐metal electrode molecular junction. Application of this model allows calculation of the parameters of the molecular potential barrier. The formation of such a molecular barrier is verified by scanning tunneling microscope (STM) and transmission electron microscope (TEM) measurements performed using a supporting graphene layer. These findings are important for designing novel nanodevices for molecular electronics on the basis of ultrathin nanowires.  相似文献   

20.
Orienting light‐emitting molecules relative to the substrate is an effective method to enhance the optical outcoupling of organic light‐emitting devices. Platinum(II) phosphorescent complexes enable facile control of the molecular alignment due to their planar structures. Here, the orientation of Pt(II) complexes during the growth of emissive layers is controlled by two different methods: modifying the molecular structure and using structural templating. Molecules whose structures are modified by adjusting the diketonate ligand of the Pt complex, dibenzo‐(f,h)quinoxaline Pt dipivaloylmethane, (dbx)Pt(dpm), show an ≈20% increased fraction of horizontally aligned transition dipole moments compared to (dbx)Pt(dpm) doped into a 4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl, CBP, host. Alternatively, a template composed of highly ordered 3,4,9,10‐perylenetetracarboxylic dianhydride monolayers is predeposited to drive the alignment of a subsequently deposited emissive layer comprising (2,3,7,8,12,13,17,18‐octaethyl)‐21H,23H‐porphyrinplatinum(II) doped into triindolotriazine. This results in a 60% increase in horizontally aligned transition dipole moments compared to the film deposited in the absence of the template. The findings provide a systematic route for controlling molecular alignment during layer growth, and ultimately to increase the optical outcoupling in organic light‐emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号