首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tsatsulnikov  A. F.  Lundin  W. V.  Zavarin  E. E.  Nikolaev  A. E.  Sakharov  A. V.  Sizov  V. S.  Usov  S. O.  Musikhin  Yu. G.  Gerthsen  D. 《Semiconductors》2011,45(2):271-276
Results of studies of hydrogen addition during the growth of thin (∼2–3 nm) InGaN layers on their structural properties and properties of light-emitting structures that contain InGaN/GaN heterostructures in the active region are reported. It is shown that, with the known effect of a decrease in the average content of In, hydrogen addition leads to varying the local phase separation in the InGaN layers. Hydrogen addition during the growth of the InGaN layers initially causes suppression of the local phase separation, while hydrogen addition during interruptions of the growth after deposition of the InGaN films leads to a decrease in the size of the formed local In-enriched regions and to a certain increase in the local content of the In atoms.  相似文献   

3.
Mg-doped InGaN/GaN p-type short-period superlattices (SPSLs) are developed for hole injection and contact layers of green light-emitting diodes (LEDs). V-defect-related pits, which are commonly found in an InGaN bulk layer, can be eliminated in an InGaN/GaN superlattice with thickness and average composition comparable to those of the bulk InGaN layer. Mg-doped InGaN/GaN SPSLs show significantly improved electrical properties with resistivity as low as ∼0.35 ohm-cm, which is lower than that of GaN:Mg and InGaN:Mg bulk layers grown under optimized growth conditions. Green LEDs employing Mg-doped InGaN/GaN SPSLs for hole injection and contact layers have significantly lower reverse leakage current, which is considered to be attributed to improved surface morphology. The peak electroluminescence intensity of LEDs with a SPSL is compared to that with InGaN:Mg bulk hole injection and contact layers.  相似文献   

4.
Recently, 2D monolayer films of conjugated polymers have gained increasing attention owing to the preeminence of 2D inorganic films that exhibit unique optoelectronic and mechanical properties compared to their bulk analogs. Despite numerous efforts, crystallization of semiconducting polymers into highly ordered 2D monolayer films still remains challenging. Herein, a dynamic‐template‐assisted meniscus‐guided coating is utilized to fabricate continuous, highly ordered 2D monolayer films of conjugated polymers over a centimeter scale with enhanced backbone π–π stacking. In contrast, monolayer films printed on solid substrates confer upon the 1D fiber networks strong alkyl side‐chain stacking at the expense of backbone packing. From single‐layers to multilayers, the polymer π‐stacks change from edge‐on to bimodal orientation as the film thickness reaches ≈20 nm. Spectroscopic and cyclic voltammetry analysis reveals an abrupt increase in J‐aggregation and absorption coefficient and a decrease in bandgap and highest occupied molecular orbital level until critical thickness, possibly arising from the straightened polymer backbone. This is corroborated by an abrupt increase in hole mobility with film thickness, reaching a maximum of 0.7 cm2 V?1 s?1 near the critical thickness. Finally, fabrication of chemical sensors incorporating polymer films of various thicknesses is demonstrated, and an ultrahigh sensitivity of the ≈7 nm thick ultrathin film (bilayers) to 1 ppb ammonia is shown.  相似文献   

5.
InGaN red light emitting diode (LED) is one of the crucial bottlenecks that must be broken through to realize high-resolution full-color mini/micro-LED displays. The efficiency of InGaN LEDs drops rapidly as the emission spectra go from blue/green to red range due to the poor quality of high-indium-content InGaN materials. Here, high-performance InGaN red LEDs on sapphire grown by metal–organic chemical vapor deposition through strain modulation are reported. A composite buffer layer is proposed to increase the surface lattice constant of GaN and hence successfully enhances the indium incorporation efficiency of the following InGaN active layers. Consequently, a high-efficiency InGaN red mini-LED chip (mesa area: 100 × 200 µm2) with a peak wavelength of 629 nm and an external quantum efficiency of 7.4% is realized. Finally, a full-color nitride mini-LED display panel with 74.1% coverage of Rec.2020 color gamut by using the InGaN red mini-LED chips is fabricated. The study signifies the great potentials of full-nitrides high-resolution full-color mini/micro-LED displays.  相似文献   

6.
The development of strain sensors with both large strain range (>50%) and high gauge factor (>100) is a grand challenge. High sensitivity requires material to perform considerable structural deformation under tiny strain, whereas high stretchability demands structural connection or morphological integrity for materials upon large deformation, yet both features are hard to be achieved in one thin film. A new 0D–1D–2D ternary nanocomposite–based strain sensor is developed that possesses high sensitivity in broad working strain range (gauge factor 2392.9 at 62%), low hysteresis, good linearity, and long‐term durability. The skin‐mountable strain sensor, fabricated through one‐step screen‐printing process, is made of 1D silver nanowire offering high electrical conductivity, 2D graphene oxide offering brittle layered structure, and 0D fullerene offering lubricity. The fullerene constitutes a critical component that lowers the friction between graphene oxide–based layers and facilitates the sliding between adjacent layers without hurting the brittle nature of the nanocomposite film. When stretching, layer slippage induced by fullerene can accommodate partial applied stress and boost the strain, while cracks originating and propagating in the brittle nanocomposite film ensure large resistance change over the whole working strain range. Such high comprehensive performance renders the strain sensor applicable to full‐spectrum human motion detection.  相似文献   

7.
Composite InGaN/GaN/InAlN quantum dots (QDs) have been formed and studied. The structural properties of thin InAlN layers overgrown with GaN have been analyzed, and it is shown that 3D islands with lateral sizes of ∼(20–30) nm are formed in structures of this kind. It is demonstrated that deposition of a thin InGaN layer onto the surface of InAlN islands overgrown with a thin GaN layer leads to transformation of the continuous InGaN layer to an array of isolated QDs with lateral sizes of 20–30 nm and heights of 2–3 nm. The position of these QDs in the growth direction correlates with that of InAlN islands.  相似文献   

8.
To date, there have been no efficient semiconductor light emitters operating in the green and amber wavelengths. This study reports on the synthesis of InGaN nanowire photonic crystals, including dot‐in‐nanowires, nanotriangles, and nanorectangles with precisely controlled size, spacing, and morphology, and further demonstrates that bottom‐up InGaN photonic crystals can exhibit highly efficient and stable emission. The formation of stable and scalable band edge modes in defect‐free InGaN nanowire photonic crystals is directly measured by cathodoluminescence studies. The luminescence emission, in terms of both the peak position (λ ≈ 505 nm) and spectral linewidths (full‐width‐half‐maximum ≈ 12 nm), remains virtually invariant in the temperature range of 5–300 K and under excitation densities of 29 W cm?2 to 17.5 kW cm?2. To the best of our knowledge, this is the first demonstration of the absence of Varshni and quantum‐confined Stark effects in wurtzite InGaN light emitters—factors that contribute significantly to the efficiency droop and device instability under high‐power operation. Such distinct emission properties of InGaN photonic crystals stem directly from the strong Purcell effect, due to efficient coupling of the spontaneous emission to the highly stable and scalable band‐edge modes of InGaN photonic crystals, and are ideally suited for uncooled, high‐efficiency light‐emitting‐diode operation.  相似文献   

9.
The anisotropic properties of 2D orthorhombic SnS (tin monosulfide, p‐type) layers can be utilized in energy‐efficient optoelectronics by growing 2D SnS layers with a preferred orientation. To meet such a need, a strategy for growing SnS layers with the control of structural parameters such as orientation and thickness is highly desired. This report demonstrates a simple procedure for growing a large‐area SnS thin film composed of nanoscale SnS platelets with a controlled orientation relative to the surface via a single‐step process involving in situ sulfur depletion and phase structural transition of the sputter‐deposited SnS2 particles. The synthesized SnS films show good optoelectronic performances such as high signal‐to‐noise ratios, linear dynamic range, and high response speeds. In addition, the orientation of the SnS platelets is found to control the optoelectronic properties such as the electronic junction formation and the optical reflectance. The orientation‐controlled SnS layers on Si substrate operate as a good photosensor with a good zero‐bias photoresponse over a wide range of wavelengths including ultraviolet, visible, and near‐infrared. The device performances evaluated from the transient photovoltage, photocurrent, Mott–Schottky characteristics, and impedance spectroscopy are all well correlated with the geometric orientation of the 2D SnS layers within the film.  相似文献   

10.
MOCVD-grown heterostructures with one or several InxGa1?x N layers in a GaN matrix have been studied by transmission electron microscopy. In heterostructures with thick InGaN layers, a noncoherent system of domains with lateral dimensions (~50 nm) on the order of the layer thickness (~40 nm) is formed. In the case of ultrathin InGaN inclusions, nanodomains coherent with the GaN matrix are formed. The content of indium in nanodomains, determined by the DALI method, is as high as x≈0.6 or more, substantially exceeding the average In concentration. The density of the nanodomains formed in the structures studied is n≈(2–5)×1011 cm?2. In the structures with ultrathin InGaN inclusions, two characteristic nanodomain sizes are observed (3–6 and 8–15 nm).  相似文献   

11.
应变普遍存在于失配系统中,包括晶格、热膨胀系数以及扩散系数等失配,其状态即应变是否弛豫及弛豫程度与物理性能密切相关。量子阱或超晶格的晶格应变弛豫发生的临界厚度问题是关系到器件设计、材料制备的基本问题,虽然从理论上已提出了多种计算模型,但不同的模型所计算出的结果差别很大,且不同的模型所使用的范围尚不确定。这就激发了从实验上予以研究的要求。另外,含N的Ⅲ-Ⅴ族究竟适用何种模型尚无定论,且对其弛豫行为以及对性能的影响缺乏细致的研究。本文应用高分辨X射线衍射和透射电子显微技术研究了InGaN/GaN量子阱结构的应变弛豫临界厚度、行为以及对物理性能的影响。得出InGaN/GaN量子阱结构的应变弛豫临界厚度更适合基于介稳外延半导体结构应变弛豫的Fischer模型;失配位错为纯刃型位错,可通过滑移面的改变而形成穿透位错;弛豫发生后,非常明显地影响发光性能,尤其是室温下的发光性能。  相似文献   

12.
Despite extraordinary developments in the research of 2D inorganic nanomaterials, a scalable and generalized synthetic method toward 2D oxide materials that lack layered lattice structures is still challenging. Herein, an easy and versatile solution‐based route to synthesize oxides with layered nanostructures by combining sol–gel method with graphene oxide (GO) paper templates is reported. GO can stack together to form a paper‐like membrane, the gap between two GO layers provides ideal 2D space to template the growth of oxide nanolayers. By this simple strategy, the gaps are filled successfully with polycrystalline TiO2, ZnO, Fe2O3, and amorphous SiO2 nanolayers with thickness of 1–5 nm. Single or multilayers of the oxide‐based ceramic/glass nanolayers for applications in electronics, catalysts, energy storage, and gas separation can be expected; as an example, it is shown that layered Fe2O3 electrodes exhibit high performance for lithium‐ion battery due to enhanced electrical connections between the 2D nanolayers.  相似文献   

13.
The results of studies of the properties of composite InGaN/GaN/InAlN heterostructures are reported. It is shown that, in the InAlN layer, there is substantial phase separation that brings about the formation of three-dimensional islands consisting of AlN-InAlN-AlN regions. The dimensions of these islands depend on the thickness of the InAlN layer and the conditions of epitaxial growth. Interruptions in the growth of InAlN provide a means for influencing the structural properties of the InAlN islands. The use of composite InGaN/GaN/InAlN heterostructures, in which the InGaN layer with a high In content serves as the active region in light-emitting diode structures, makes it possible to achieve emission in the yellow-red wavelength range 560?C620 nm.  相似文献   

14.
The ability of a material to conduct heat influences many physical phenomena, ranging from thermal management in nanoscale devices to thermoelectrics. Van der Waals 2D materials offer a versatile platform to tailor heat transfer due to their high surface-to-volume ratio and mechanical flexibility. Here, the nanoscale thermal properties of 2D indium selenide (InSe) are studied by scanning thermal microscopy. The high electrical conductivity, broad-band optical absorption, and mechanical flexibility of 2D InSe are accompanied by an anomalous low thermal conductivity (κ). This can be smaller than that of low-κ dielectrics, such as silicon oxide, and it decreases with reducing the lateral size and/or thickness of InSe. The thermal response is probed in free-standing InSe layers as well as layers supported by a substrate, revealing the role of interfacial thermal resistance, phonon scattering, and strain. These thermal properties are critical for future emerging technologies, such as field-effect transistors that require efficient heat dissipation or thermoelectric energy conversion with low-κ, high electron mobility 2D materials, such as InSe.  相似文献   

15.
Multiple surface reconstructions have been observed on ultra-thin GaN (0001) layers of 1–10 nm thickness, covering a 3 nm thick In0.11Ga0.89N single quantum well in a GaN matrix. Low energy electron diffraction patterns show (2×2) and (√3×√3)-R30° symmetries for samples annealed in nitrogen plasma, and (2×2), (3×3), (4×4), and (6×6) symmetries for samples overgrown with an additional monolayer-thin GaN film by molecular beam epitaxy under Ga-rich growth conditions. Photoelectron spectroscopy shows that the InGaN quantum wells and capping layers are stable for growth temperatures up to 760 °C, and do not show formation of indium or gallium droplets on the surface. The photoluminescence emission from the buried InGaN SQWs remains unchanged by the preparation process, demonstrating that the SQWs do not undergo any significant modification.  相似文献   

16.
InGaN/(Al,Ga)N heterostructures containing ultrathin InGaN layers, grown by submonolayer deposition are studied. It is shown that significant phase separation with the formation of local In-enriched regions ??3?C4 nm in height and ??5?C8 nm in lateral size is observed in InGaN layers in the case of InGaN and GaN growth by cyclic deposition to effective thicknesses of less than one monolayer. The effect of growth interruption in a hydrogen-containing atmosphere during submonolayer growth on the structural and optical properties of InGaN/(Al,Ga)N heterostructures is studied. It is shown that these interruptions stimulate phase separation. It is also shown that the formation of In-enriched regions can be controlled by varying the effective InGaN and GaN thicknesses in the submonolayer deposition cycles.  相似文献   

17.
The barrier thickness effect on the energy and microstructure properties of InGaN/GaN multiple quantum wells is investigated with Stillinger-Weber potential. The calculation indicates that the energy of a quantum well increases as the GaN barrier thickness rises, and that Ga-N and In-N bonds are shrunk with respect to those of random InGaN alloy. Moreover, a critical value of the barrier thickness exits. If the barrier thickness exceeds the critical value, the bond length of Ga-N in quantum wells reduces as a function of indium concentration. This singular behavior of Ga-N bond is analyzed with a force balance model.  相似文献   

18.
Contrary to the conventional belief that the consideration for topological insulators (TIs) as potential thermoelectrics is due to their excellent electrical properties benefiting from the topological surface states, this work shows that the 3D weak TIs, formed by alternating stacks of quantum spin Hall layers and normal insulator (NI) layers, can also be decent thermoelectrics because of their focus on minimum thermal conductivity. The minimum lattice thermal conductivity is experimentally confirmed in Bi14Rh3I9 and theoretically predicted for Bi2TeI at room temperature. It is revealed that the topologically “trivial” NI layers play a surprisingly critical role in hindering phonon propagation. The weak bonding in the NI layers gives rise to significantly low sound velocity, and the localized low‐frequency vibrations of the NI layers cause strong acoustic–optical interactions and lattice anharmonicity. All these features are favorable for the realization of exceptionally low lattice thermal conductivity, and therefore present remarkable opportunities for developing high‐performance thermoelectrics in weak TIs.  相似文献   

19.
2D layered MoS2 has drawn intense attention for its applications in flexible electronic, optoelectronic, and spintronic devices. Most of the MoS2 atomic layers grown by conventional chemical vapor deposition techniques are n‐type due to the abundant sulfur vacancies. Facile production of MoS2 atomic layers with p‐type behavior, however, remains challenging. Here, a novel one‐step growth has been developed to attain p‐type MoS2 layers in large scale by using Mo‐containing sol–gel, including 1% tungsten (W). Atomic‐resolution electron microscopy characterization reveals that small tungsten oxide clusters are commonly present on the as‐grown MoS2 film due to the incomplete reduction of W precursor at the reaction temperature. These omnipresent small tungsten oxide clusters contribute to the p‐type behavior, as verified by density functional theory calculations, while preserving the crystallinity of the MoS2 atomic layers. The Mo containing sol–gel precursor is compatible with the soft‐lithography techniques, which enables patterned growth of p‐type MoS2 atomic layers into regular arrays with different shapes, holding great promise for highly integrated device applications. Furthermore, an atomically thin p–n junction is fabricated by the as‐prepared MoS2, which shows strong rectifying behavior.  相似文献   

20.
This work is a systematic experimental and theoretical study of the in-plane dielectric functions of 2D gallium and indium films consisting of two or three atomic metal layers confined between silicon carbide and graphene with a corresponding bonding gradient from covalent to metallic to van der Waals type. k-space resolved free electron and bound electron contributions to the optical response are identified, with the latter pointing towards the existence of thickness dependent quantum confinement phenomena. The resonance energies in the dielectric functions and the observed epsilon near-zero behavior in the near infrared to visible spectral range, are dependent on the number of atomic metal layers and properties of the metal involved. A model-based spectroscopic ellipsometry approach is used to estimate the number of atomic metal layers, providing a convenient route over expensive invasive characterization techniques. A strong thickness and metal choice dependence of the light–matter interaction makes these half van der Waals 2D polar metals attractive for quantum engineered metal films, tunable (quantum-)plasmonics and nano-photonics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号