首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a highly refractive index planarization layer showing a very smooth surface for organic light‐emitting diode (OLED) light extraction, and we successfully prepared a highly efficient white OLED device with an embossed nano‐structure and highly refractive index planarization layers. White OLEDs act as an internal out‐coupling layer. We used a spin‐coating method and two types of TiO2 solutions for a planarization of the embossed nano‐structure on a glass substrate. The first TiO2 solution was TiO2 sol, which consists of TiO2 colloidal particles in an acidic aqueous solution and several organic additives. The second solution was an organic and inorganic hybrid solution of TiO2. The surface roughness (Ra) and refractive index of the TiO2 planarization films on a flat glass were 0.4 nm and 2.0 at 550 nm, respectively. The J–V characteristics of the OLED including the embossed nano‐structure and the TiO2 planarization film were almost the same as those of an OLED with a flat glass, and the luminous efficacy of the aforementioned OLED was enhanced by 34% compared to that of an OLED with a flat glass.  相似文献   

2.
Low‐Q‐whispering gallery modes (low‐Q‐WGM) can be used for label‐free detection of interactions between biomolecules, measuring their binding and release kinetics or for analysis of changes in the medium in real‐time. The main advantage of the low‐Q‐WGM approach over other label‐free methods is the possibility of measurements in small cavities as the method uses microparticles down to 6 µm as sensors. Commercially available dye‐doped microparticles that are used as low‐Q‐WGM sensors exhibit several drawbacks. Therefore, alternative particle types are developed and optimized as low‐Q‐WGM sensors. First, dye‐doped particles made of different materials are screened. The most critical parameter for WGM performance is the refractive index (RI) of sensor particles. Furthermore, surface roughness of particles, determined by scanning electron microscopy and atomic force microscopy, affects their performance as WGM microsensors. In the second test, fluorescent dyes immobilized on nonfluorescent particles by means of nanometer thick layer‐by‐layer (LbL) films are shown to generate a strong WGM signal. The LbL‐coated particles show remarkably less background fluorescence than dye‐doped particles and are easier to prepare. Finally, this article proposes rapid preparation methods for WGM microparticle sensors based on various parameters such as material type, RI, surface roughness, and number of coated polymer layers.  相似文献   

3.
A rapid fabrication method of highly reflective TiO2 inverse opal (IO) film exhibiting controllable thickness, high TiO2 content, and excellent interfacial contact with glass substrate is presented. By inducing accelerated solvent evaporation during the colloidal self‐assembly process, a composite film of polystyrene (PS)/TiO2 has been directly fabricated on a fluorine doped tin oxide (FTO) glass substrate, which exhibits the highly ordered opaline structure of PS embedded into the TiO2 matrix. This hybrid fabrication path leads to the formation of layers with the preferred {111} face‐centered cubic (FCC) orientation parallel to the substrate and to produce a 1 cm2‐wide well‐ordered composite colloidal crystal film in less than 30 min. The film showed highly ordered FCC structure, particularly at the upper region, due to the induced solvent evaporation and exhibited a reliable light modulation at a reflectance mode. Regardless of the size of sacrificial PS microspheres, TiO2 IO films of controllable thickness were successfully formed by varying the moving speed of the fabrication cell. The binary aqueous dispersion of tailor‐made anatase TiO2 nanoparticles and monodisperse PS microspheres showed a high degree of dispersion stability under basic conditions. Hydrothermal treatment of the TiO2 dispersion favored the crystallinity of the coated film and provided small volume contraction after thermal calcinations. The high degree of dispersion stability enabled to increase TiO2 content in a binary mixture, which is more favorable toward the robust and large‐area IO film. The calcined films exhibited excellent mechanical robustness and intimate interfacial contact with the glass substrate. which in turn resulted in higher TiO2 content near the glass substrate. The TiO2 IO film was tested as a dye‐sensitized solar cell (DSSC) photoelectrode, and a single cell showed a relatively high photon‐to‐current conversion efficiency of 4.2%. The high TiO2 content of IO film and its good adhesion to the FTO subratrate remarkably improved in the performance of the solar cell compared to the previous investigations where post‐infiltration of TiO2 had been employed.  相似文献   

4.
An organic fluorophore is doped into a mesoporous TiO2 photoelectrode to absorb ultraviolet light and convert it to green light for more efficient light harvesting of N719 dye. This fluorescence conversion enables the absorption of additional green light by dye molecules by means of Förster resonance energy transfer between fluorescent compound donor and N719 dye acceptor. Owing to close fit between the emission peak of fluorophore and the absorption peak of N719 dye, the Förster resonance energy transfer effect enhances the incident photon to current conversion efficiency of the dye‐sensitized solar cells based on fluorophore‐doped TiO2 photoelectrodes. Improved power conversion efficiency (8.03–8.13%) is also achieved for the fluorophore‐doped (10−4 M) dye‐sensitized solar cells compared with a cell without the doping of fluorophore (7.63%). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
We report photovoltaic devices consisting of patterned TiO2, porphyrin dyes, and layer‐by‐layer (LBL) polyelectrolyte multilayer/oligoethylene glycol dicarboxylic acid (OEGDA) composite films. A composite polyelectrolyte LBL/OEGDA film was fabricated by formation of an alternating multilayer of linear polyethyleneimine (LPEI) and polyacrylic acid (PAA), followed by immersion of the LBL film into an OEGDA aqueous solution. The ionic conductivity attained in this LBL LPEI/PAA and OEGDA composite film was approximately 10–5 S cm–1 at room temperature and humidity. Investigations of dye‐sensitized photovoltaic devices constructed with the LBL (LPEI/PAA)/OEGDA composite films, TiO2, and four types of porphyrin dyes resulted in optimization of the dye molecule and its orientation at the interface with the ionically conductive composite. The photocurrent value of photovoltaic devices constructed with the composite LBL/OEGDA film from illumination of a xenon white light source exhibited a nearly 1.5 times enhancement over the device without OEGDA. This enhancement of the photocurrent was due to the high room‐temperature ionic conductivity of the multilayer composite film. Further marked improvements of the photovoltaic performance were achieved by patterning the TiO2 electrode using polymer stamping as a template for TiO2 deposition. The device with patterned TiO2 electrodes exhibited almost 10 times larger conversion efficiencies than a similar device without patterning.  相似文献   

6.
An iodine‐free solid‐state dye‐sensitized solar cell (ssDSSC) is reported here, with 6.8% energy conversion efficiency—one of the highest yet reported for N719 dye—as a result of enhanced light harvesting from the increased transmittance of an organized mesoporous TiO2 interfacial layer and the good hole conductivity of the solid‐state‐polymerized material. The organized mesoporous TiO2 (OM‐TiO2) interfacial layer is prepared on large‐area substrates by a sol‐gel process, and is confirmed by scanning electron microscopy (SEM) and grazing incidence small‐angle X‐ray scattering (GISAXS). A 550‐nm‐thick OM‐TiO2 film coated on fluorine‐doped tin oxide (FTO) glass is highly transparent, resulting in transmittance increases of 8 and 4% compared to those of the bare FTO and conventional compact TiO2 film on FTO, respectively. The high cell performance is achieved through careful control of the electrode/hole transport material (HTM) and nanocrystalline TiO2/conductive glass interfaces, which affect the interfacial resistance of the cell. Furthermore, the transparent OM‐TiO2 film, with its high porosity and good connectivity, exhibits improved cell performance due to increased transmittance in the visible light region, decreased interfacial resistance ( Ω ), and enhanced electron lifetime ( τ ). The cell performance also depends on the conductivity of HTMs, which indicates that both highly conductive HTM and the transparent OM‐TiO2 film interface are crucial for obtaining high‐energy conversion efficiencies in I2‐free ssDSSCs.  相似文献   

7.
TiO2 is a very promising photocatalytic material due to its merits including low cost, nontoxicity, high chemical stability, and photocorrosion resistance. However, it is also known that TiO2 is a wide bandgap material, and it is still challenging to achieve high photocatalytic performance driven by solar light. In this paper, silicon‐doped TiO2 nanorod arrays are vertically grown on fluorine‐doped tin oxide substrates and then are heat treated both in air and in vacuum. It is found that the silicon doping together with the heat treatment brings synergic effect to TiO2 nanorod films by increasing the crystallinity, producing abundant oxygen vacancies, enhancing the hydrophilicity as well as improving the electronic properties. When used as photoanodes in photoelectrochemical water splitting, under the condition of AM 1.5G simulated solar irradiation and without using any cocatalysts, these nanorod films show photocurrent density as high as 0.83 mA cm?2 at a potential of 1.23 V versus reversible hydrogen electrode, which is much higher than that of the TiO2 nanorod films without doping or heat treating. The silicon‐doped TiO2 nanorod array films described in this paper are envisioned to provide valuable platforms for supporting catalysts and cocatalysts for efficient solar‐light‐assisted water oxidation and other solar‐light‐driven photocatalytic applications.  相似文献   

8.
A novel room‐temperature method for the preparation of porous TiO2 films with high performance in dye‐sensitized solar cells (DSSCs) has been developed. In this method a small amount of TiIV tetraisopropoxide (TTIP) is added to an ethanolic paste of TiO2 nanoparticles, where it hydrolyzes in situ and connects the TiO2 particles to form a homogenous and mechanically stable film of up to 10 μm thickness without crack formation. Residual organics originating from the TTIP were removed by UV–ozone treatment of the films, leading to a remarkable improvement of the cell efficiency. Intensity‐modulated photocurrent/voltage spectroscopy (IMPS/IMVS) showed that the main effect of the UV–ozone treatment is to suppress the recombination of photogenerated electrons, thereby extending their lifetime. The efficiency was further increased by preheating the TiO2 nanoparticles before the paste preparation to remove contaminants originating from the preparation process of the particles. Solar‐to‐electric energy conversion efficiencies of 4.00 and 3.27 % have been achieved for cells with conductive glass and plastic film substrates, respectively, under illumination with AM 1.5 (100 mW cm–2) simulated sunlight.  相似文献   

9.
A technique is presented that allows for altering of the physical characteristics of films of TiO2 nanoparticles by exposure to visible light. In this technique, dye‐sensitized oxide nanoparticles are deposited on a substrate by dip‐coating. Photodissociation of the organic ligand layer leads to cross‐linking of the nanoparticles. Consequently, irradiated films have a decreased porosity, an increased index of refraction and an increased hydrophobicity. Films irradiated with green light are compared to films irradiated with UV light. Within experimental error, visible‐ and UV‐illumination induces the same changes in the films. The mechanism of surfactant elimination in dye‐sensitized oxide particles is discussed, patterning is demonstrated, and prospective applications of the technique are considered.  相似文献   

10.
By two‐step sequential Pb2+ adsorption and reaction with methylammonium‐iodide (MAI) or ‐bromide (MABr) at a low concentration level of 0.06–0.10 m over mesoporous TiO2 or ZrO2 film, a well‐defined nanoscale CH3NH3PbI3 (MAPbI3) photosensitizer or CH3NH3PbBr3 (MAPbBr3) light emitter could be prepared in situ, respectively in a reproducible and atom‐economical way. The as‐prepared nanoscale perovskites are compared with their thin film counterparts in terms of light absorption/emission, crystallinity, surface morphology, and energy‐conversion efficiency. The nanoscale perovskite‐decorated films display more transparency than the bulky film due to the much lower amount deposited, while blueshifted and overwhelmingly brighter photoluminescence is observed in the “nano” relative to the “bulk” due to quantum size confinement. Transmission electron microscopy images also clearly show that a few nanometer‐sized perovskite dots are deposited homogeneously over the surface of TiO2‐ or ZrO2‐particulate film in the course of the current preparative route. When the nano‐MAPbI3 is tested as a photosensitizer in a solid‐state dye‐sensitized solar cell configuration with a very thin ( ≈ 650 nm) TiO2 mesoporous film, it has a promising initial power conversion efficiency of 6.23%, which outperformed the result of 2.28% from a typical organic molecular dye coded as MK‐2.  相似文献   

11.
SiO2 and TiO2 thin films with gold nanoparticles (NPs) are of particular interest as photovoltaic materials. A novel method for the preparation of spin‐coated SiO2–Au and TiO2–Au nanocomposites is presented. This fast and inexpensive method, which includes three separate stages, is based on the in situ synthesis of both the metal‐oxide matrix and the Au NPs during a baking process at relatively low temperature. It allows the formation of nanocomposite thin films with a higher concentration of Au NPs than other methods. High‐resolution transmission electron microscopy studies revealed a homogeneous distribution of NPs over the film volume along with their narrow size distribution. The optical manifestation of localized surface plasmon resonance was studied in more detail for TiO2‐based Au‐doped nanocomposite films deposited on glass (in absorption and transmittance) and silicon (in specular reflectance). Maxwell–Garnett effective‐medium theory applied to such metal‐doped nanocomposite films describes the peculiarities of the experimental spectra, including modification of the antireflective properties of bare TiO2 films deposited on silicon by varying the concentration of metal NPs. The antireflective capabilities of the film are increased after a wet etching process.  相似文献   

12.
Formamidinium lead iodide (FAPbI3) has a broader absorption spectrum and better thermal stability than the most famous methylammonium lead iodide, thus exhibiting great potential for photovoltaic applications. In this report, the light‐induced photoluminescence (PL) evolution in FAPbI3 thin films is investigated. The PL intensity evolution is found to be strongly dependent on the atmosphere surrounding the samples. When the film is exposed to air, its photoluminescence intensity is enhanced more than 140 times after continuous ultraviolet laser illumination for 2 h, and the average lifetime is prolonged from 17 to 389 ns. The enhanced photoluminescence implies that the trap density is significantly reduced. The comparative study of the photoluminescence properties in air, nitrogen, and oxygen/helium environment suggests that moisture is important for the PL enhancement. This is explained in terms of moisture‐assisted light‐healing effect in FAPbI3 thin films. With this study, a new method is demonstrated to increase and control the quality of hybrid perovskite thin films.  相似文献   

13.
A preparation technique of TiO2 screen‐printing pastes from commercially‐available powders has been disclosed in order to fabricate the nanocrystalline layers without cracking and peeling‐off over 17 µm thickness for the photoactive electrodes of the dye‐sensitised solar cells. A conversion efficiency of 8·7% was obtained by using a single‐layer of a semi‐transparent‐TiO2 film. A conversion efficiency of 9·2% was obtained by using double‐layers composed of transparent and light‐scattering TiO2 films for a photon‐trapping system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, camphorsulfonic acid (CSA) doped polyaniline (PANI) synthesized by oxidative polymerization and titanium-di-oxide (TiO2) nanoparticles synthesized by sol-gel were solution blend in a mixed solvent of 1:1 m-cresol and chloroform to fabricate hybrid bulk heterojunction (BHJ) solar cells of structure ITO/PEDOT:PSS/CSA-doped PANI-TiO2/Al. The effect of TiO2 weight ratio on the cell performance was investigated by analyzing the structural and optical properties of CSA-doped PANI/TiO2 hybrid thin films with different TiO2 ratio. Crystalline structure of TiO2 nanoparticles, polymer and hybrid thin films were identified by XRD studies and root-like structure of both polymer and hybrid thin films by SEM image. CSA-doped PANI was confirmed as p-type semiconductor through Hall-effect analysis. High absorption coefficient along with PL quenching in hybrid thin film confirms its application in solar cells as photoactive layer. For optimal fabrication conditions, maximum photo conversion efficiency (PCE) of 0.21% was obtained for a device with lower TiO2 weight ratio. The results show that optimization of absorption intensity of CSA-doped PANI in the visible region of spectrum and morphology of hybrid films will effectively enhance the performance of hybrid solar cells. Error analysis of PCE for all the fabricated solar cells has been reported.  相似文献   

15.
The unique structure of green leaves endows them with an extremely high light‐harvesting efficiency. In this work, green leaves are applied as biotemplates to synthesize morph‐TiO2. The structural features favorable for light harvesting from the macro‐ to the nanoscale are replicated in morph‐TiO2 through a two‐step infiltration process and the N contained in the original leaves is self‐doped into the resulting samples. The absorbance intensities within the visible‐light range of morph‐TiO2 derived from different leaves increase by 103–258% and the band‐gap‐absorption onsets at the edge of the UV and visible‐light range show a red‐shift of 25–100 nm compared to those in TiO2 without the template. The photocatalytic activity of morph‐TiO2 is also improved, as proven by an electron paramagnetic resonance (EPR) study and degradation of rhodamine dye under irradiation with UV and visible light. The present work, as a new strategy, is of far‐reaching significance in learning from nature, driving us to make full use of the most‐abundant resources and structure‐introduced functions endowed by nature, opening up possibilities for extensive study of the physical and chemical properties of morph‐structured oxides and extending their potential for use in applications such as solar cells, photocatalysts, photoelectrical devices, and photoinduced sensors.  相似文献   

16.
A barrier layer of undoped TiO2 was deposited on the Nb‐doped TiO2 electrode to suppress the recombination at the Nb‐doped TiO2/dye–electrolyte interface for highly efficient dye‐sensitized solar cells (DSCs). The Nb content in TiO2 was varied in a range of 0.7–3.5 mol% to modify the TiO2 energy‐band structure. Nb‐doped TiO2/dye interfaces were characterized by a combination of ultraviolet photoemission spectroscopy and optical absorption spectroscopy measurements, allowing the determination of the conduction band minimum (CBM) of the TiO2 electrode and the lowest unoccupied molecular orbital of the N719 dye. The lowering of TiO2 CBM by Nb doping induced the increase in short‐circuit current of DSCs. However, open‐circuit voltage and fill factor are decreased, and this result was ascribed to the enhanced recombination at the Nb‐doped TiO2/dye–electrolyte interface. The effect of doping on charge transport in DSCs was analyzed using electrochemical impedance spectroscopy. We have shown that by introducing of TiO2 barrier layer, the Nb doping content, which results in DSC highest efficiency, can be increased because of the suppression of the dopant‐induced recombination. The energy conversion efficiency of the solar cells increased from 7.8% to 9.0% when undoped TiO2 electrode is replaced with electrode doped with 2.7 mol% of Nb because of the improvement of the electron injection and collection efficiencies. The correlation between the electronic structure of the TiO2 electrode, charge transfer characteristics, and photovoltaic parameters of DSCs is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Development of highly efficient circularly polarized organic light‐emitting diodes (CPOLEDs) has gained increasing interest as they show improved luminous efficiency and high contract 3D images in OLED displays. In this work, a series of binaphthalene‐containing luminogenic enantiomers with aggregation‐induced emission (AIE) and delayed fluorescence properties is designed and synthesized. These molecules can emit from green to red light depending on the solvent polarity due to the twisted intramolecular charge transfer effect. However, their solid powders show bright light emissions, demonstrating a phenomenon of AIE. All the molecules exhibit Cotton effects and circularly polarized luminescence in toluene solution and films. Multilayer CPOLEDs using the doped and neat films of the molecules as emitting layers are fabricated, which exhibit high external quantum efficiency of up to 9.3% and 3.5% and electroluminescence dissymmetry factor (gEL) of up to +0.026/?0.021 and +0.06/?0.06, respectively. Compared with doped CPOLEDs, the nondoped ones show higher gEL and much smaller current efficiency roll‐off due to the stronger AIE effect. By altering the donor unit, the electroluminescence maximum of the doped film can vary from 493 to 571 nm. As far as it is known, this is the first example of efficient CPOLEDs based on small chiral organic molecules.  相似文献   

18.
We demonstrate novel organic light‐emitting diode (LED) materials that contain a green phosphorescent dye (dmbpy)Re(CO)3Cl (dmbpy = 4,4′‐dimethyl‐2,2′‐bipyridine), and a red fluorescent dye 4‐dicyanomethylene‐6‐(p‐dimethylaminostyryl)‐2‐methyl‐4H‐pyran (DCM) as dopants and polyvinylcarbazole (PVK) as the host. The photoluminescence (PL) and electroluminescence (EL) properties of these complex materials were studied. The energy transfer efficiency from PVK host to DCM is increased by the (dmbpy)Re(CO)3Cl co‐dopant, which has an emission energy between that of PVK and DCM. The (dmbpy)Re(CO)3Cl, which emits a long‐lived phosphorescence, is used as an energy coupler, providing the possibility to harvest both singlet and triplet energy in the devices. The pure red emission from DCM was observed from PL and EL spectra of (dmbpy)Re(CO)3‐Cl(> 2.0 wt.‐%):DCM(> 0.5 wt. %) doped PVK films, demonstrating an efficient energy transfer from PVK and (dmbpy)Re(CO)3‐Cl to DCM. By optimizing the concentration of DCM and (dmbpy)Re(CO)3Cl in PVK, a maximum EL quantum efficiency of 0.42 cd A–1 at a current density of 9.5 mA cm–2 was obtained. The EL quantum efficiency of the doubly doped device is significantly enhanced in comparison with both a DCM‐only doped PVK device and a DCM‐doped PVK device with the green fluorescent dye Alq3 as co‐dopant. The improvement in the operating characteristics of the phosphorescent and fluorescent dye doubly doped device is attributed to efficient energy transfer in the system, in which both triplet and singlet excitons are used for resultant emission in the polymer device.  相似文献   

19.
The gas-sensing properties of titanium oxide (TiO2)-doped zinc oxide (ZnO) thick film sensor specimens to typical ethanol vapor under UV light activation at room temperature have been investigated. Zinc nanoparticles were mixed with commercial TiO2 in various weight percentage (0%, 1%, 5%, and 10%) and sintered at 650 °C for 2 h to prepare the thick film sensors. The sensors exhibit better photosensitivity and gas sensitivity to ethanol analyte. The response and recovery times are within 8 s. TiO2 doping can improve the sensors stability and reproducibility. X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterization of the film materials revealed that Zn2TiO4 and TiO2 phases hindered the rod- or needle-like structure growth and subsequently affected the gas sensitivity. UV absorption spectra of the sensing film material completely dispersed in ethanol solution exhibited that the red shifts were caused with the doping of a small amount of TiO2 into ZnO then blue shift was caused with higher TiO2 level. The results of the UV spectra are well consistent with the photosensitive performance. The maximum sensitivity can be achieved by doping the amount of TiO2 (5 wt%).  相似文献   

20.
A simple procedure was developed to prepare modified titiania (TiO2) photoanodes for dye sensitized solar cells at low and high temperature in order to improve overall cell efficiency. Modification of TiO2 films achieved by the incorporation of either carbon black powder (CBP) or multi-wall carbon nanotubes (MWCNTs). A small quantity of titanium alkoxide was added in a dispersion of titiania (TiO2) powder consisting of nanoparticles at room temperature, which after alkoxide׳s hydrolysis helps to the connection between titiania (TiO2) particles and to the formation of mechanically stable relatively thick films on conductive glass substrates. The absence of surfactant allowed us to prepare films at relatively low temperature (~100 °C), while the effect of sintering at a higher temperature (500 °C) was also studied. The structural properties of the films were examined with porosimetry method and microscopy analysis. Better electrical results were obtained for the MWCNT (0.1 wt%) modified TiO2 films, with 3.14% and 4.68% conversion efficiencies under 1 sun illumination after treatment at 100 °C and 500 °C, respectively. The enhancement in photocurrent for MWCNT-TiO2 films compared to pure TiO2 films is attributed to the improved interconnectivity between TiO2 nanoparticles, which further improved the electron transport through the film. For carbon doped CBP-TiO2 cells, lower efficiencies were observed compared to pure TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号