共查询到19条相似文献,搜索用时 78 毫秒
1.
以4,4'-亚甲基双(异氰酸苯酯)(MDI)为扩链剂, 将Triton X-100(TX-100)引入到双酚A二缩水甘油醚(DGEBA) 中, 设计合成水性碳纤维上浆剂(DGEBA-MDI-TX-100), 并利用合成的水性上浆剂对碳纤维表面进行改性。在此基础上, 以环氧树脂为基体, 制备碳纤维/环氧树脂复合材料, 研究了水性上浆剂改性碳纤维对碳纤维表面性能及其复合材料界面性能的影响。结果表明:与未经处理的碳纤维相比, 经过上浆剂改性后的碳纤维润湿性能得到了较大的提高, 与环氧树脂的接触角下降了 9.1%;与环氧树脂复合后制备的复合材料的界面剪切强度提高了64.7%。 相似文献
2.
使用自行合成的环氧改性水性聚氨酯(EWPU)上浆剂对碳纤维进行表面处理,主要研究了EWPU上浆剂对碳纤维表面及碳纤维/氰酸酯树脂复合材料界面性能的影响。采用扫描电镜(SEM)、傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)和静态接触角等表征方法对比研究了二次上浆处理前碳纤维(CF)和处理后碳纤维(MCF)的表面形貌、表面化学元素组成和浸润性的变化,并通过单纤维破碎实验和短梁剪切法,研究了EWPU上浆剂对碳纤维/氰酸酯树脂复合材料界面力学性能的影响。结果表明,经EWPU上浆处理后碳纤维表面O/C值增加了39.13%,表面活性官能团的含量增加了14.97%,碳纤维与树脂的初始和稳态接触角分别减小了19.41%和20.59%,碳纤维/氰酸酯树脂复合材料的单丝界面剪切强度和层间剪切强度分别增加了13.42%和14.29%。 相似文献
3.
碳纤维具有力学性能优、密度低、耐腐蚀、耐高温等一系列优异性能,近年来被广泛应用于航空、航天等重要领域。相较于国外的高强中模碳纤维,国内虽有T800级碳纤维与之对应,但是国内对高性能碳纤维的研究工作起步晚,研究尚不充分。上浆剂作为碳纤维表面的重要组成部分,对碳纤维的表面性能有着重要的影响,进而影响复合材料的界面性能。本文采用SEM、TGA、XPS等表征手段,研究分析了上浆剂对国产T800级碳纤维的影响,对碳纤维的表面物化特性及其不同先进树脂基复合材料的微观界面性能进行研究,为国产高性能碳纤维的产品发展提供借鉴意义。 相似文献
4.
5.
6.
7.
为了研究两种不同上浆剂和湿热环境对国产300级碳纤维/环氧树脂体系微观界面性能的影响,采用单丝断裂法,测试分析了去浆前后碳纤维单丝复合体系在自然干态、湿热处理3 d及湿热处理6 d的状态下微观界面剪切应力的变化.结合对扫描电镜(SEM)、原子力显微镜(AFM)及X射线光电子能谱(XPS)等测试结果的分析,研究了碳纤维上浆剂对微观界面性能及其界面耐湿热性能的影响.结果表明:去浆前后A300碳纤维表面均有明显沟槽;上浆剂1并未使A300碳纤维表面粗糙度有明显变化,但上浆剂2使A300碳纤维表面粗糙度减小,而两种上浆剂均使A300碳纤维表面含氧极性官能团含量减少.两种上浆剂对制备的复合材料界面性能和耐湿热性能都有较大的提高,其中上浆剂1在自然干态下对界面性能的提高更明显. 相似文献
8.
采用扫描电镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)等测试方法表征了上浆/未上浆国产T700级(MT700)碳纤维的表面特性,并通过单丝断裂实验测试了单丝复合体系微观界面剪切强度(IFSS),在此基础上研究了碳纤维表面特性对单丝复合体系微观界面性能及其耐湿热性能的影响.研究表明:MT700碳纤维表面上浆剂改善了纤维/基体微观界面强度及其耐湿热性能;湿热环境对复合材料的微观界面性能影响显著,尤其是造成纤维/基体间的化学键合作用破坏,去湿后部分界面性能可恢复. 相似文献
9.
10.
以双酚A型二醚二酐(BPADA)、间苯二胺和1,3-二(4′-氨基苯氧基)苯(TPE-R)为原料合成了水溶性热塑性聚酰亚胺上浆剂,对国产高强高模碳纤维(HMCF)表面进行上浆处理并制备成复合材料。研究了不同单体摩尔比对上浆剂特性以及上浆处理后纤维表面结构性能的影响,进一步分析了热塑性上浆剂对国产高强高模碳纤维增强热塑性聚醚酮酮(PEKK)树脂基复合材料界面性能的影响。结果表明,当BPADA与TPE-R的单体摩尔比为1∶1时,合成得到的热塑性上浆剂不仅分子量分布均匀,而且具有优异的热稳定性,如温度554℃其热失重仅为5%。上浆处理后,高强高模碳纤维表面O/C由0.08增至0.18,提高了125%;上浆后纤维强度略有增高,模量几乎无变化;上浆处理后对复合材料界面性能改善明显,HMCF/PEKK复合材料层间剪切强度由处理前38.5 MPa提升至最高59.4 MPa,增幅高达54.3%。 相似文献
11.
先用静电纺丝法制备聚丙烯腈(PAN)、聚乙烯醇(PVA)和聚乙烯吡咯烷酮(PVP)基高分子纤维,然后将其碳化制备出不同碳源的多孔碳纤维材料。使用X-射线衍射仪、红外光谱仪、差示扫描量热仪和N2吸脱附分析仪等手段表征了碳纤维材料的结构和性能。结果表明,PAN基碳纤维的比表面积最大(113.5 m2/g)、微孔较多,对刚果红的吸附量最大(560.2 g/kg)。根据吸附动力学模型和吸附等温线的分析结果,碳纤维对刚果红的吸附属单层吸附。结果还表明,温度越高材料的吸附速率越高但是吸附量没有明显的变化;在酸性条件下PVA基碳纤维保持较高的吸附活性,而PAN基碳纤维则与之相反;刚果红水溶液的pH值对PVP基碳纤维吸附活性的影响很小。 相似文献
12.
DMTA法研究上胶剂对炭纤维/双马来酰亚胺树脂基复合材料固化动力学的影响 总被引:1,自引:0,他引:1
利用动态热机械分析(DMTA)法研究了东邦HTA和国产CCF-1两种T300级炭纤维(CF)增强QY8911-Ⅰ型双马来酰亚胺(BMI)树脂基复合材料的固化动力学,并用FT-IR和XPS对炭纤维表面上胶剂及官能团进行了分析。结果表明,上胶剂对CF/BMI复合材料的固化反应程度没有明显影响,但除胶前后,复合材料的固化初始松弛时间和反应活化能发生了不同变化,HTA CF除胶后固化初始松弛时间延长,反应活化能增大,而CCF-1 CF除胶后固化初始松弛时间缩短,反应活化能减小,这主要是因为炭纤维表面活性官能团含量的不同所致。 相似文献
13.
目的 制备一种热塑性上浆剂,以期改善碳纤维的表面性能以及单丝拉伸性能。方法 通过直接磺化法制备磺化聚醚醚酮水性上浆剂,并通过喷涂法对未上浆的T300碳纤维进行上浆处理,研究制得上浆剂的结构特征、性能以及其对碳纤维性能的影响。结果 制得磺化聚醚醚酮的磺化度约为74%,以此为主浆料配制的水性上浆剂具有良好的成膜性和储存稳定性。经上浆处理后,碳纤维表面形成了连续的磺化聚醚醚酮上浆层,表面官能团含量明显增加,树脂微滴在纤维表面的接触角降低。此外,上浆层可以弥补纤维表面的部分缺陷,使得上浆后碳纤维的单丝拉伸强度提高了5%。结论 磺化聚醚醚酮上浆剂可以有效改善碳纤维的表面性能及单丝拉伸性能。 相似文献
14.
15.
针对碳纤维增强乙烯基酯树脂(CF/VE)复合材料界面性能薄弱的问题,通过热氧-接枝的方法对碳纤维表面进行改性,通过添加偶联剂改性树脂,并采用真空辅助成型工艺制备了CF/VE复合材料。通过纤维扫描电镜(SEM)表征和CF/VE复合材料力学性能测试、动态力学测试、界面粘结参数计算以及界面的微观表征验证改性方法的效果。SEM测试表明改性后纤维比表面积和粗糙度提高;TGA测试表明碳纤维氧化温度大于210℃,且氧化温度在600℃时,CF/VE复合材料综合性能最佳;CF/VE复合材料界面性能随隅联剂质量浓度的增大先提高后降低,且在其质量浓度为1%时,层间剪切强度最大,相对于未改性CF/VE复合材料的提高了74.3%;动态力学性能测试(DMA)表明改性CF/VE复合材料的玻璃化转变温度Tg较未改性的提高了约10℃;界面粘结参数A和α的定量计算表明改性CF/VE复合材料界面性能得到较大改善。 相似文献
16.
17.
M40/5228复合材料力学性能研究 总被引:4,自引:0,他引:4
用湿法缠绕技术制作了M40/5228预浸料,对热压灌固化的M40/5228复合材料的室温、高温干态和湿态力学性能进行了研究,用扫描电镜(SEM)对复合材料的界面进行了表征。与M40/4211复合材料相比,M40/5228复合材料的各项力学性能均有很大程度的提高。M40/5228复合材料具有优异的耐湿热性能,在130℃干态和湿态下,其弯曲强度、模量和层剪强度的保持率较高 相似文献
18.
研究热压成型过程中,不同固化温度对亚麻纤维及其增强复合材料力学性能的影响。结果表明:亚麻纤维在120,140℃和180℃分别处理2h后单纤维拉伸性能发生不同程度的下降。环氧树脂E-51在120,140℃和180℃下固化2h后拉伸性能未发生明显变化。基于环氧树脂的单向亚麻纱线增强复合材料分别在120℃和140℃固化成型时,拉伸强度和冲击强度变化不大。但当固化温度达到180℃时,由于亚麻纤维在高温环境下损伤较为严重,其增强复合材料的拉伸强度和冲击强度均发生明显的下降。然而复合材料的拉伸模量随着成型温度的升高有一定幅度的提升。 相似文献
19.
碳纤维增强水泥基复合材料的发展与研究 总被引:7,自引:1,他引:7
传统的水泥混凝土材料由于功能单一、脆性大、自重大、抗拉强度和抗弯强度差,在一些特殊领域中的应用受到了很大限制.碳纤维由于具有高比强度、高比模量、密度小、耐腐蚀、导电性好、对人畜无害等优异性能而颇受材料科学工作者的青睐,被视为许多复合材料的优良增强体.将碳纤维加入到水泥基体中,制成碳纤维增强水泥基复合材料,不仅可改善水泥自身力学性能的缺陷,使其具有高强度、高模量、高韧性,更重要的是能把普通的水泥建筑材料变成对温度和应力敏感、具有自感知内部应力和损伤及一系列电磁屏蔽性能的智能材料. 相似文献