首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monodisperse polymer particles were prepared via one‐step seeded polymerization using polystyrene, poly(methyl methacrylate), or styrene/methyl methacrylate copolymer [poly(ST‐co‐MMA)] as seed particles and 1,6‐hexanedioldiacrylate or divinylbenzene as crosslinking monomer. For the study, the effects of the combination of seed polymer and crosslinking monomer, the ratio of the absorbed monomer to the seed polymer particles (swelling ratio: S/R), and the seeded polymerization rate on the variation of surface morphology and mechanical properties of polymer particles, such as recovery rate, K‐values, breaking strength, and breaking displacement were investigated by using microcompression test. It was observed that the surface morphology could be controlled by changing polymerization rate or combination of seed polymer and crosslinking monomer, and it had a great influence on mechanical properties, especially the breaking strength. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2350–2360, 2007  相似文献   

2.
The effects of the swelling ratio (S/R), the existence of methyl side groups, the length and molecular structure of backbone chain of crosslinking monomer on the variation of mechanical properties of single polymer particle were investigated. For the study, monodisperse polymer particles were prepared via one‐step seeded polymerization using PMMA as seed particles and 1,n‐alkanediol di(meth)acrylate or (ethylene glycol)n di(meth)acrylate as crosslinking monomer. Recovery rate, K‐values, breaking strength, and breaking displacement were measured as mechanical properties and they were performed by using microcompression test. The following observations were made: (1) only breaking strength was closely related to the swelling ratio; (2) the existence of methyl side groups increased the K‐values but decreased the recovery rate of the polymer particles; and (3) K‐values were the most sensitive to the variation of backbone chain length of crosslinking monomer, and they were decreased with the increase of the backbone chain length of crosslinking monomer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
Monodisperse polymer particles composed of polystyrene (PS) and poly(1,6‐hexanedioldiacrylate) were prepared via one‐step seeded polymerization using PS as seed particles. For the study, the effects of the molecular weight of seed polymer particles, the ratio of the absorbed hexanediol dimethacrylate (HDDA) to the seed polymer particles (swelling ratio), and the seeded polymerization rate on the surface morphology of poly(St‐HDDA) particles were investigated. It was observed that the crater‐shaped defect was at the surface of poly(St‐HDDA) particles, independent of the molecular weight of seed polymer, and swelling ratio. But its surface morphology could be controlled by changing the rate of the seeded polymerization. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2385–2394, 2007  相似文献   

4.
Narrow‐dispersion or monodisperse with stable and smooth surface polymer microspheres were prepared without a significant coagulum by precipitation polymerization in the absence of any stabilizer. The monomer glycidyl metharylate (GMA) was copolymerized with ethyleneglycol dimethacrylate (EGDMA) as crosslinker by precipitation polymerization technique with 2,2′‐azobisisobutyronitrile as initiator in neat acetonitrile. The effects of the content of EGDMA on the polymerization characteristics and size/uniformity of the microspheres were investigated. The onset of the thermal degradation temperature at higher temperature and the swelling test suggest that the prepared particles were highly crosslinked. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
In‐situ polymerization is the polymerization of one monomer in the presence of another polymer. It can be performed by sequential emulsion polymerization, or by reactions in the melt, in the solid phase, or in solution. The current report describes two methods to obtain poly(vinyl chloride) (PVC) modification through polymerization of a monomer absorbed in commercial porous suspension‐type PVC particles. The generated modified PVC products differ significantly in their structure and properties. The first approach includes absorption of a monomer/peroxide solution within porous suspension‐type PVC particles, followed by polymerization/crosslinking in the solid state at 80°C in an aqueous stabilizer‐free dispersion. The monomer/crosslinker pairs selected are styrene/DVB (divinyl benzene), methylmethacrylate/EGDMA (ethylene glycol dimethacrylate), butyl acrylate/EGDMA, and ethylhexyl acrylate/EGDMA. The influence of composition and nature of the polymerizing/crosslinking constituents on the modified PVC particle structure was studied by microscopy methods, porosity measurements, and dynamic mechanical behavior (DMTA). The level of molecular grafting between PVC and the modifying polymer was determined by solvent extraction experiments. This work shows that the different monomers used represent distinct courses of monomer transport through the PVC particles. The characteristics of the modified PVC particle indicate that the polymerization/crosslinking process occurs in both the PVC bulk, i.e., within the walls constituting a particle, and in the PVC pores. No indication of chemical intermolecular interaction within the modified PVC particles was found. In the second approach, a solution of monomer, initiator, and a crosslinking agent is absorbed in commercial suspension‐type porous PVC particles, thus forming a dry blend. This dry blend is subsequently reactively polymerized in a twin‐screw extruder at an elevated temperature, 180°C, in the molten state. The properties of the reactively extruded PVC/PMMA blends are compared with those of physical blends at similar compositions. Owing to the high polymerization temperature, short‐chain polymers are formed in the reactive polymerization process. Reactively extruded PVC/PMMA blends are transparent, form single‐phase morphology, have a single Tg, and show mechanical properties comparable with those of the neat PVC. The resulting reactively extruded PVC/PMMA blends have high compatibility. J. Vinyl Addit. Technol. 10:109–120, 2004. © 2004 Society of Plastics Engineers.  相似文献   

6.
Uniform and macroporous polymer particles in the size range of 5–21 μm were prepared by a multistep seeded polymerization method. The uniform polystyrene particles in the size range of 1.9–7.5 μm were used as the seed particles in the preparation of macroporous beads. The seed particles with different sizes and molecular weights were produced by dispersion polymerization, by changing the type of dispersion medium and the initiator concentration. In the synthesis of macroporous particles, a two‐step swelling procedure was employed. The seed latexes were first swollen by a low molecular‐weight organic agent (i.e., dibutyl phthalate, DBP), then by a divinylbenzene–ethylvinylbenzene isomer mixture including an oil phase soluble initiator (i.e., benzoyl peroxide). The porous structure in the final beads was achieved by the polymerization of the monomer phase within the swollen seed particles including a mixture of linear polystyrene and DBP. The initiator concentration in the repolymerization step, the seed latex type (i.e., the diameter and the molecular weight of seed latex), DBP/seed latex, and the monomer/seed latex ratios were changed to achieve uniform polymer beads with different average sizes and pore structures. The average size, the size distribution, and the surface morphology of final beads were analyzed by Scanning Electron Microscopy. The internal structure of the beads were analyzed by Transmission Electron Microscopy. The results indicated that the average size of the final particles increased with increasing the seed latex diameter, DBP/seed latex, and monomer/seed latex ratios. The average pore size decreased with decreasing the molecular weight of the seed latex and increasing the DBP/seed latex and monomer/seed latex ratios. These tendencies were explained by the viscosity change of the porogen solution used in the repolymerization step. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2271–2290, 1999  相似文献   

7.
The thermodynamic simulation under the kinetic control state indicates that 1.77‐µm‐sized monodispersed polystyrene (PS) particles can absorb 500 times the amount of the styrene monomer with keeping the monodispersity by the “dynamic swelling method” (DSM) which the authors proposed in 1991. Actually, about 14.1‐µm‐sized monodispersed styrene‐swollen PS particles in which PS seed particles absorbed 500 times the amount of styrene monomer were successfully prepared utilizing DSM. By one‐step seeded polymerization for the dispersion of the swollen particles at 30°C for 48 h with the 2,2′‐azobis(4‐methoxy‐2,4‐dimethyl valeronitrile) initiator, 13.1‐µm‐sized monodispersed PS particles were produced. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 278–285, 1999  相似文献   

8.
中空聚合物微球的制备——种子及核乳胶粒的制备   总被引:3,自引:0,他引:3  
为了制得具有中空结构的聚合物微球,首先以十二烷基苯磺酸钠(SDBS)为乳化剂,在其用量低于CMC的条件下,进行甲基丙烯酸甲酯(MMA)、甲基丙烯酸(MAA)和丙烯酸丁酯(BA)的乳液聚合,制备了带羧基的种子乳胶粒.然后采用MMA、MAA和二乙烯基苯为单体进行种子乳液聚合,制备了轻度交联的带羧基的核乳胶粒.该核乳胶粒经过核-壳乳液聚合和适当的碱处理工艺就可成为具有中空结构的聚合物微球.采用粒度仪测定了乳胶粒的直径及其分布,采用TEM对乳胶粒结构形态进行了表征.研究了种子及核乳胶粒制备过程中单体加料方式、乳化剂用量及羧基单体种类等因素对聚合稳定性、乳胶粒直径及其分布以及最终的中空聚合物微球结构形态的影响,确定了制备种子及核乳胶粒的最佳工艺条件.在制备种子阶段,SDBS用量为单体总量的0.5%,采用一次性加入单体的进料工艺;在核乳胶粒制备阶段,以MAA为羧基单体,所有单体采用"饥饿式"加料,半连续补加乳化剂并使乳化剂用量为核单体总量的0.15%时可保持聚合稳定性并保证无新乳胶粒生成.  相似文献   

9.
The dumbbell‐like/egglike microspheres of poly(4‐vinylpyridine/n‐butyl acrylate)/polystyrene [P(4VP/nBA)/PS] were prepared by soap‐free seed emulsion polymerization. The effects of various polymerization parameters, such as the amount of ethyl acetate (EA) in the continuous phase, swelling time, degree of crosslinking of seed polymer, polymerization temperature, and compatibility of seed polymer and the secondary polymer, and so forth, on the formation of dumbbell‐like/egglike morphology were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that secondary particles could be eliminated either by drastically increasing the number of seed particles or by stripping EA from the seed latex by dialysis and evaporation under a vacuum. Swelling the seed particle with the secondary monomer was essential for the preparation of egglike microspheres. For the localization of PS domains on one side of the egglike particle, the most effective factors were to elevate the polymerization temperature up to 90°C and simultaneously to lower the compatibility of the polymer on the seed particle surface with the phase of PS, while using the uncrosslinked seed latex. Crosslinking the seed latex was not suitable for localizing the PS domains in the seed particle, especially when the degree of crosslinking exceeded 0.5 wt % of EGDMA. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2002–2017, 2001  相似文献   

10.
Monodispersed crosslinked cationic poly(4‐vinylpyridine‐co‐butyl acrylate) [P(4VP‐BA)] seed latexes were prepared by soapless emulsion polymerization, using 2,2′‐azobismethyl(propionamidine)dihydrochloride (V50) as an initiator and divinylbenzene (DVB) or ethylene glycol dimethacrylate (EGDMA) as a crosslinker. The optimum condition to obtain monodispersed stable latex was investigated. It was found that the colloidal stability of the P4VP latex can be improved by adding an adequate amount of BA (BA/4VP = 1/4, w/w), and adopting a semicontinuous monomer feed mode. Subsequently, poly(4‐vinylpyridine‐co‐butyl acrylate)/Poly(styrene‐co‐butyl acrylate) [P(4VP‐BA)/P(ST‐BA)] composite microspheres were synthesized by seeded polymerization, using the above latex as a seed and a mixture of ST and BA as the second‐stage monomers. The effects of the type of crosslinker, the degree of crosslinking, and the initiators (AIBN and V50) on the morphology of final composite particles are discussed in detail. It was found that P(4VP‐BA)/P(ST‐BA) composite microspheres were always surrounded by a PST‐rich shell when V50 was used as initiator, while sandwich‐like or popcorn‐like composite particles were produced when AIBN was employed. This is because the polarity of the polymer chains with AIBN fragments is lower than for the polymer with V50 fragments, hence leading to higher interfacial tension between the second‐stage PST‐rich polymer and the aqueous phase, and between PST‐rich polymer and P4VP‐rich seed polymer. As a result, the seed cannot be engulfed by the PST‐rich polymer. Furthermore, the decrease of Tg of the second‐stage polymer promoted phase separation between the seeds and the PST‐rich polymer: sandwich‐like particles formed more preferably than popcorn‐like particles. It is important knowledge that various morphologies different from PST‐rich core/P4VP‐rich shell morphology, can be obtained only by changing the initiator, considering P4VP is much more hydrophilic than PST. The zeta potential of composite particles initiated by AIBN in seeded polymerization shifted from a positive to a negative charge. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1190–1203, 2002  相似文献   

11.
Poly(styrene‐co‐divinylbenzene)‐based monodisperse macroporous particles were obtained by a modified seeded polymerization technique. The monodisperse polystyrene particles, obtained by dispersion polymerization in sufficiently large sizes and with suitable average molecular weights, were directly used as the seed latex in the production of macroporous particles. Therefore, the number of swelling and polymerization stages in the multistage production was reduced. In the first stage, the seed particles were swollen with a diluent, dibutyl phthalate (DBP), and then with a monomer phase including styrene, divinylbenzene, and, as an initiator, benzoyl peroxide. The monodisperse macroporous particles were obtained by the repolymerization of the monomer mixture in the seed particles. The particles, having different porosity characteristics, were synthesized through variations in the dibutyl phthalate/seed‐latex (DBP/SL) ratio. Selected macroporous particle samples were slurry‐packed into stainless steel high‐performance liquid chromatography columns (300 mm long × 7.8‐mm i.d.). The separation of the protein mixture by these columns in the reversed‐phase chromatography (RPC) mode was investigated. Liquid chromatograms with high resolutions were obtained under an acetonitrile/water gradient over a wide range of flow rates (i.e., 0.5–3 mL/min), especially for the particles produced with a monomer/seed‐latex (M/SL) ratio of 3.0 mL/g. In the RPC experiments, the particles produced with an M/SL ratio of 3.0 mL/g and DBP/SL ratios of 1.0 and 1.5 mL/g exhibited better chromatographic performance than the other samples. The maximum theoretical plate number was 3500 for the particles produced with the M/SL ratio of 3.0 mL/g and DBP/SL ratio of 1.5 mL/g with albumin as the analyte. The size exclusion chromatography (SEC) calibration curves and the back‐pressure/flow‐rate relationships of the produced columns were also determined. The particles obtained with an M/SL ratio of 3.0 mL/g and a DBP/SL ratio of 1.5 mL/g exhibited the best performance in SEC applications. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3685–3696, 2004  相似文献   

12.
In this study, the monodisperse–macroporous particles produced by a relatively new polymerization protocol, the so‐called, “modified seeded polymerization,” were used as column‐packing material in the reversed phase chromatography (RPC) of proteins. The particles were synthesized in the form of styrene‐divinylbenzene copolymer approximately 7.5 μm in size. In the first stage of the synthesis, the monodisperse polystyrene particles 4.4 μm in size were obtained by dispersion polymerization and used as the “seed latex.” The seed particles were swollen by a low‐molecular‐weight organic agent and then by a monomer mixture. The monodisperse–macroporous particles were obtained by the polymerization of monomer mixture in the seed particles. In the proposed polymerization protocol, the number of successive swelling stages was reduced with respect to the present techniques by the use of sufficiently large particles with an appropriate average molecular weight as the seed latex. A series of particles with different porosity properties was obtained by varying the monomer/seed latex ratio. The separation behavior of HPLC columns including the produced particles as packing material was investigated in the RPC mode using a protein mixture including albumin, lysozyme, cytochrome c, and ribonuclease A. The chromatograms were obtained with different flow rates under an acetonitrile–water gradient. The theoretical plate number increased and chromatograms with higher resolutions were obtained with the particles produced by using a lower monomer/seed latex ratio. The separation ability of the column could be protected over a wide range of flow rates (i.e., 0.5–3 mL/min) with most of the materials tested. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 607–618, 2004  相似文献   

13.
Monolithic materials prepared from a mixture of n‐lauryl methacrylate (LMA) and ethylene glycol dimethacrylate (EGDMA) dedicated to nano‐liquid chromatography separation were synthesized using in situ UV polymerization in 75 µm inner diameter capillary tubing. A mixture of cyclohexanol and ethylene glycol was used as a porogen to control porosity. While the preparation conditions yielded satisfactory analytical results, values of pertinent parameters turned out to be critical for obtaining columns with efficient separation. In particular, the impact of two key parameters was studied here in an attempt to identify optimal preparation conditions: (a) different concentrations of the crosslinker EGDMA and (b) different porogen compositions while the monomer to porogen ratio was kept constant. Resulting monolithic phases were characterized in terms of permeability, mean pore diameter and swelling using three different eluents (water, acetonitrile and a mixture at maximum viscosity). First, the LMA/EGDMA monolithic phases present peculiar morphology and hydrodynamic properties for 37% by weight of EGDMA, as reflected by the peak observed for their permeability and mean pore diameter. Swelling experiments revealed the coexistence of two phases in the monolithic structure: a highly crosslinked rigid phase which was insensitive to swelling in the presence of solvent and a weakly crosslinked flexible phase exhibiting significant swelling, with a transition to such a biphasic behavior taking place at 37% by weight of EGDMA. The effects of porogen composition and network swelling properties are presented based on a combination of the Flory ? Huggins theory of isotropic mixing in polymer solutions and the Flory ? Rehner theory of rubber elasticity in the affine network approximation. © 2016 Society of Chemical Industry  相似文献   

14.
The effect of various reaction parameters on the rate of polymerization, Rp, and on the particle size and morphology of aqueous acrylic–polyurethane hybrid dispersions, prepared by semibatch emulsion polymerization, was investigated. The particles of polyurethane dispersion were used as seeds during the polymerization of acrylic component: methyl methacrylate (MMA), butyl acrylate (BA), and a mixture of MMA and BA with the ratio of 1:1. These emulsions were found to form structured polymer particles in aqueous media using scanning electron microscopy. The kinetics of the emulsion polymerization was studied on the basis of Wessling's model. The influence of emulsifier and initiator concentrations, including the monomer feed rates, Rm, on the rates of polymerization and on the properties of the resulting dispersions were studied. The number of particles and the particle size were also measured during the polymerization process. The final values were found to be independent of the concentration of the emulsifier, initiator and the monomer feed rate in monomer starved conditions. In the steady‐state conditions, during the seeded semibatch hybrid emulsion polymerization, the rate of polymerization and the monomer feed rate followed the Wessling relationship 1/Rp = 1/K + 1/Rm. The dispersions MMA/PU, BA/PU, and MMA/BA/PU have K values of 0.0441, 0.0419 and 0.0436 mol/min, respectively. The seeded BA/PU hybrid polymerization proceeded according to Smith‐Ewart Case I kinetics, while the MMA/PU hybrid emulsions demonstrate Case II of the Smith‐Ewart kinetic model. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2639–2649, 2002  相似文献   

15.
The seeded emulsion polymerization of styrene with emulsified monomer feeding was performed by polyethyl acrylate (PEA) latex as seed emulsion. It was shown that the grafting reactions occurred between two components on the composite latex particles. The loci of seeded polymerization were studied by the kinetics of grafting reaction. The highest grafting efficiency in the initial period of seeded emulsion polymerization supported the fact that the surfaces of PEA particles are the sites of polymerization of styrene. The grafting efficiency decreased with increasing monomer‐to‐polymer ratio and initiator concentration. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1495–1499, 1999  相似文献   

16.
Narrow‐disperse or monodisperse poly{[poly(ethylene glycol) methyl ether acrylate]‐co‐(acrylic acid)} (poly(PEGMA‐co‐AA)) microspheres were prepared by distillation precipitation polymerization with ethyleneglycol dimethacrylate (EGDMA) as crosslinker with 2,2′‐azobisisobutyronitrile as initiator in neat acetonitrile in the absence of any stabilizer, without stirring. The diameters of the resultant poly(PEGMA‐co‐AA‐co‐EGDMA) microspheres were in the range 200–700 nm with a polydispersity index of 1.01–1.14, which depended on the comonomer feed of the polymerization. The addition of the hydrogen bonding monomer acrylic acid played an essential role in the formation of narrow‐disperse or monodisperse polymer microspheres during the polymerization. Copyright © 2006 Society of Chemical Industry  相似文献   

17.
Two distinctively different seeded dispersion polymerization processes employing micron and submicron size seed particles, respectively, have been used to gain a better mechanistic understanding of the dispersion polymerization process. Using monodisperse micron-size PMMA particles as seed, it was found that when low monomer/polymer ratios (M/P < 2.50) were used in methyl methacrylate (MMA) seeded dispersion polymerizations, particle growth dominates and the number of particles remains unchanged (i.e., narrow distributions are preserved). However, when higher M/P ratios (>2.50) were applied, bimodal or trimodal particle size distributions were produced, which is considered to result from the competition between particle growth and secondary nucleation. When small amounts of submicron seeds were used with the initial intention of gaining a better understanding of the nucleation process, it was surprisingly found that the final number of micron size particles was nearly the same as the initial number of submicron seed particles over a relatively wide range of reaction conditions, including seed, initiator, stabilizer, and monomer concentrations, and the medium composition. These results indicate that within certain limits seeded dispersion polymerization can be a more robust means of controlling particle size than ab initio dispersion polymerization in terms of reproducibly producing a target particle size. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

18.
Polystyrene latex particles were synthesized using a method based on emulsifier‐free miniemulsion polymerization under ultrasonic irradiation in the presence of 2,2′ azobis (2‐amidinopropane) dihydrochloride (V‐50) as a cationic ionizable water‐soluble initiator and cetyl alcohol as costabilizer. The optimized conditions were obtained by using various parameters, such as the amounts of monomer and initiator, and the time and power of ultrasonic irradiation. In optimal conditions, the latex particles appeared to be about 250 nm in diameter through scanning electron microscopy (SEM). The SEM and gel permeation chromatography (GPC) analyses and monomer conversions of emulsifier‐free miniemulsion polymerization were compared with those of conventional emulsifier‐free emulsion polymerization using V‐50 as initiator in both cases. The results showed that in the miniemulsion polymerization, the rate of polymerization (Rp) was significantly higher, and latex particles were significantly smaller than those in the conventional emulsion polymerization. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

19.
Terpolymers based on N‐isopropylacrylamide, sodium 2‐acrylamido‐2‐methyl‐propanesulfonate, and Ntert‐butylacrylamide were synthesized by free‐radical copolymerization with 2,2′‐azobisisobutyronitrile as an initiator. The lower critical solution temperatures (LCSTs) of the linear polymer aqueous solutions were determined by the measurement of the transmittance on UV at different temperatures. The influence of the polymer concentration, polymer composition, and ionic strength on the LCSTs of the linear polymers was investigated. The LCST decreased with increases in the hydrophobic monomer Ntert‐butylacrylamide, polymer concentration, and ionic strength. The phase transition became sharp when the polymer concentration and ionic strength increased. Meanwhile, the crosslinked hydrogels were prepared with the same recipe used for the linear terpolymers, but a crosslinker was added to the reaction system. The swelling ratios of the hydrogels at various temperatures and salt solutions were determined. The hydrogels possessed both high swelling ratios and thermosensitivity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
Carboxylated polystyrene latex was used as seed and isoprene as the second-stage monomer in an inhibited, seeded emulsion polymerization recipe for studies of monomer swelling kinetics at 80°C during interval III of an emulsion polymerization. The isoprene was added to the reactor in small portions using a syringe, and changes in the reactor pressure were continuously measured. Isoprene was added until a free liquid monomer phase was formed; that was, interval II was reached, as indicated by no further pressure increase upon the addition of more monomer. When the observed pressure increment, Opi, per unit isoprene added was plotted as a function of the volume fraction of polymer in the latex particles, vp, the graph could be divided into 3 domains. The break points in the Opi curve could, in an analogous emulsion polymerization, be identified as the glass transition temperature for the polymer, the so-called gel point in interval III and the onset of interval III. In the second domain, where the vp was between the glass transition temperature, Tg, for the seed polymer and the gel point, the value of Opi decreased significantly with increasing monomer concentration in the latex particles. This was due to the entropy of mixing and the monomer acting as a plasticizer in the seed polymer. The rate of sorption of monomer to the latex particles was low at high values of vp. It then increased rapidly with increasing monomer concentrations in the latex particles, [M]p, and a maximum was observed in domain 2. At lower values of vp the sorption rate decreased in domain 3 and finally became zero as the free liquid monomer phase started to form. Results from batch polymerization suggested that the rate of diffusion of adsorbed monomer and oligo radicals into the particles was retarded. A simplified form of the Vanzo equation was used to estimate the monomer partitioning. It predicted too high a value of [M]p, especially in domain 2 of the swelling process. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2041–2051, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号