首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc oxide (ZnO) nanoparticles were synthesized by homogeneous precipitation and calcination method and were then characterized by transmission electron microscopy and X‐ray diffraction analysis. Synthesized ZnO was found to have no impurity and had a dimension ranging from 30–70 nm with an average of 50 nm. The effect of these ZnO nanoparticles as cure activator was studied for the first time in natural rubber (NR) and nitrile rubber (NBR) and compared with conventional rubber grade ZnO with special reference to mechanical and dynamic mechanical properties. From the rheograph, the maximum torque value was found to increase for both NR and NBR compounds containing ZnO nanoparticles. ZnO nanoparticles were found to be more uniformly dispersed in the rubber matrix in comparison with the conventional rubber grade ZnO as evident from scanning electron microscopy/X‐ray dot mapping analysis. The tensile strength was observed to improve by 80% for NR when ZnO nanoparticles were used as cure activator instead of conventional rubber grade ZnO. An improvement of 70% was observed in the case of NBR. The glass transition temperature (Tg) showed a positive shift by 6°C for both NR and NBR nanocomposites, which indicated an increase in crosslinking density. The swelling ratio was found to decrease in the case of both NR and NBR, and volume fraction of rubber in swollen gel was observed to increase, which supported the improvement in mechanical and dynamic mechanical properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

2.
The effect of sol–gel synthesized magnesium oxide (MgO) nanoparticles as cure activator is studied for the first time in the vulcanization of natural rubber (NR) and compared with conventional zinc oxide (ZnO) in terms of cure, mechanical, and thermal properties. The NR vulcanizate with 1 phr (Parts per hundred parts of rubber) nano MgO shows an excellent improvement in the curing characteristics and the value of cure rate index is about 400% greater for NR vulcanizate containing 1 phr nano MgO in comparison to the NR vulcanizate with 5 phr conventional ZnO. Both mechanical and thermal properties of NR vulcanizate are found to be satisfactory in the presence of 1 phr nano MgO as cure activator in comparison to conventional NR vulcanizate. This study shows that only 1 phr nano MgO can successfully replace 5 phr conventional ZnO with better resulting properties in the sulfur vulcanization of NR. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42705.  相似文献   

3.
Geopolymer (GP) was synthesized and used as activators in sulfur vulcanization of epoxidized natural rubber (ENR). Influences of GP on cure characteristics, crosslink density, mechanical, thermal, and morphological properties were investigated and compared to the conventional rubber formulation with ZnO activator. The ZnO is a hazardous chemical for the environment and has proclaimed that its application in rubber technology should be reduced and controlled. It was found that the GP-activated ENR compounds showed significantly higher vulcanization rate than cases with the conventional ZnO compound. This was indicated by the GP activated compounds having shorter scorch time, cure times, and lower activation energy but higher cure rate index (CRI). Also, the GP activated ENR compounded with stearic acid exhibited the highest conversion. This matches well the highest torque difference and crosslink density, observed by temperature scanning stress relaxation (TSSR) and swelling measurements. Furthermore, the GP-activated vulcanizate had better thermal stability than the ZnO-activated ENR material. In addition, the GP-activated ENR vulcanizate with stearic acid exhibited high 100% moduli, tensile strength, and hardness. This proves that GP has a high potential for use as activators in sulfur vulcanization of rubber compounds, as an alternative to the conventional ZnO. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48624.  相似文献   

4.
The high molecular weight (MW) polypropylene with average particle size of 60 nm was synthesized by controlled growth mechanism using Ziegler–Natta catalyst. The atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies showed that PP nanoparticles were spherical in shape. Structure and crystallinity were concomitantly studied through Fourier transform infrared spectroscopy and X‐ray diffraction, respectively. It shows nanospherical PP particles with more crystallinity (~ 75%) compared with macrosized PP (~ 59%). In addition, differential scanning calorimetry studies revealed the finite particle size effect on Tg and the scale dependence Tg followed a first order exponential trend. As particle size goes down to nano‐ scale from macrosize, continuous elevation of Tg's were observed from ?25 to ?11°C. This phenomenon was directed to configuration entropy of single spherical nanoparticles of PP. The mechanical properties and surface roughness were also evaluated through AFM. At last, the properties of nanosized PP were compared with micron and macrosized particles. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
Zinc oxide (ZnO) nanoparticles of size 20–90 nm and surface area 9.56 m2/g were synthesized from ZnCl2 and Chitosan and characterized by X‐ray diffraction, high resolution transmission electron microscopy (HRTEM), and scanning electron microscopy (SEM). Natural rubber (NR) vulcanizates containing nano ZnO was prepared by mill mixing and characterized by SEM, energy dispersive X‐ray analysis (EDAX), and HRTEM. Cure characteristics, free volume studies, bound rubber, crosslink density, and dynamic mechanical properties were evaluated and compared with that of NR vulcanizate containing conventional micro ZnO. Considering the cure characteristics, it was found that NR vulcanizate with 0.5 phr (parts per 100 g rubber) of nano ZnO showed low values of optimum cure time (t90) and very high cure rate index compared with 5 phr of conventional micro ZnO. The study shows that micro ZnO can be successfully replaced with nano ZnO for accelerated sulfur vulcanization process in NR, and preparation of vulcanizate containing nano ZnO with better properties as that of micro ZnO. The optimum dosage of nano ZnO as a cure activator in NR vulcanization was found to be 0.5 phr compared with conventional grade micro ZnO. This will lead to substantial cost reduction in the manufacture of rubber products and alleviate environmental pollution due to excess ZnO in rubber compounds. POLYM. ENG. SCI., 2013 © 2013 Society of Plastics Engineers  相似文献   

6.
Extent of cure and rheological properties were obtained for out‐of‐autoclave materials, Cycom 5320‐8HS and Cycom 5320‐PW, for the manufacturer recommended cure cycle using differential scanning calorimeter and encapsulated sample rheometer (ESR), respectively. Rheological properties from ESR were further used in designing the cure cycles to study the evolution of mechanical properties. Five panels were cured at different cure stages using the designed cure cycles and coupons were tested for short beam shear and combined loading compression properties at different cure stages. To correlate the mechanical properties with its respective glass transition temperature, dynamic mechanical analyzer was used to obtain the glass transition temperature for the coupons obtained from the respective panels. Statistical results showed significant difference in short beam shear and combined loading compression properties up to vitrification, however, no significant difference was observed on these mechanical properties after vitrification. The observed linear trend between degree of cure (DOC) and glass transition temperature (Tg) was validated using DiBenedetto relation. Linearly increasing trend between DOC and glass transition temperature (Tg) for different cure states suggests that both DOC and Tg can be used interchangeably to define the state of material. A good correlation was observed between material cure state and the mechanical properties. A mathematical model was also proposed to determine the short beam shear and combined loading compression properties based on material cure state. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41548.  相似文献   

7.
The effects of post-curing and cure temperature on the glass transition temperature, T g, and the mechanical properties of epoxy adhesives were studied. T g was measured by a dynamic mechanical analysis apparatus developed in-house and the mechanical properties of the adhesives (yield strength, Young’s modulus and failure strain) were measured by a tensile machine. The relationships between T g and mechanical performance under various post-cure conditions were investigated. The curing process was the same for all tests, consisting of an initial stage performed at different temperatures followed by cooling at room temperature. Three sets of specimens were considered, sharing the same initial cure process, but with a different post-curing procedure. In the first set, the specimens were only subjected to a curing process; in the second set, the specimens were subjected to a curing process followed by a post-cure performed at a temperature below the T g of the fully cured network, T g∞; and in the third set, the specimens were subjected to a curing process followed by a post-cure performed at a temperature above the T g∞. When post-cured at a temperature above T g∞, the mechanical and physical properties tend to have a constant value for any cure temperature.  相似文献   

8.
The graft copolymerization of 2‐hydroxyethyl acrylate (HEA) monomer onto natural rubber (NR) latex was successful using cumene hydroperoxide and tetraethylene pentamine as redox initiators. The grafting of poly(2‐hydroxyethyl acrylate) (PHEA) on the NR particles was confirmed by Fourier transform infrared spectroscopy, 1H NMR spectroscopy and TEM. The NR‐g‐PHEA with various grafting percentages (0%, 8.7%, 14.3% and 18.7%) was compounded on a two‐roll mill with a sulfur vulcanization system. The effects of grafting percentage on the cure characteristics, dielectric properties, thermal properties and physical properties of NR‐g‐PHEA vulcanizates were investigated. It was found that increased grafting caused NR‐g‐PHEA vulcanizates to have reduced water contact angle, scorch time and cure time, while the dielectric constant and dissipation factor increased. The NR‐g‐PHEA vulcanizate with 8.7% grafting exhibited the highest delta torque (MH ? ML), crosslink density, tensile strength, moduli at 100%, 200% and 300% strains, and hardness, with insignificant loss of elongation at break in comparison to the other cases. © 2018 Society of Chemical Industry  相似文献   

9.
Mechanical, dynamic, thermal, and morphological properties of dynamically cured 60/40 NR/PP TPVs with various loading levels of paraffinic oil were investigated. It was found that stiffness, hardness, tensile strength, storage shear modulus, complex viscosity, glass transition temperature (Tg) of the vulcanized rubber phase, degree of crystallinity and crystalline melting temperature (Tm) of the polypropylene (PP) phase decreased with increasing loading levels of oil. This is attributed to distribution of oil into the PP and vulcanized rubber domains causing oil‐swollen amorphous phase and vulcanized rubber domains. An increasing trend of elastic response in terms of tension set and damping factor was observed in the TPVs with loading levels of oil in a range of 0–20 phr. It is supposed that a major proportion of oil was first preferably migrated into the PP phase and caused an abrupt decreasing trend of degree of crystallinity and Tm of the PP phase. The dispersed vulcanized rubber domains remained small as particles with a low degree of swelling. Increasing loading levels of oil higher than 20 phr caused a decreasing trend of elongation at break and elastomeric properties. Saturation of oil in the PP phase was expected and the excess oil was transferred to the rubber phase which thereafter caused larger swollen vulcanized rubber domains. The remaining amount of oil was able to separate as submicron pools distributed in the PP matrix. This caused lowering of Tg, Tm, crystallinity of PP phase as well as strength, elastomeric, and dynamic properties of the TPVs. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
The goal of this study is to compare thermal and mechanical properties of an epoxy resin system reinforced with SiC nanoparticles using both conventional thermal curing and microwave irradiation techniques. The microwave curing technique has shown potential benefits in processing polymeric nanocomposites by reducing the curing time without compromising the thermo‐mechanical performances of the materials. It was observed from this investigation that, the curing time was drastically reduced to ~30 min for microwave curing instead of 12 h room temperature curing with additional 6 h post curing at 75°C. Ductile behavior was more pronounced for microwave curing technique while thermal curing showed brittle like behavior as revealed from flexural test. The maximum strain to failure was increased by 25–40% for microwave‐cured nanocomposites over the room temperature cured nanocomposites for the same loading of nanofillers. The glass transition temperature (Tg) also increased by ~14°C while curing under microwave irradiation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41708.  相似文献   

11.
Hydroxyapatite nanoparticles (HA) reinforced polymer blend based on chlorinated nitrile rubber (Cl-NBR) and chlorinated ethylene propylene diene monomer rubber (Cl-EPDM) were prepared. Resulting blend composites were analyzed with regard to their rheometric processing, crystallinity, glass transition temperature (Tg), mechanical properties, oil resistance, AC conductivity, and transport behavior. The decrease in optimum cure time with the addition of HA is more advantageous for the development of products from these blend nanocomposites. The XRD, FTIR, and SEM confirmed the attachment and uniform dispersion of HA nanoparticles in the Cl-NBR/Cl-EPDM blend. The good compatibility between polymer blend and nanoparticles was also deduced by the formation of spherically shaped HA particles in the blend matrix determined by TEM analysis. DSC analysis showed an increase in Tg of the blend with the filler loading. The addition of HA particles to the blend produced a remarkable increase in tensile and tear strength, hardness, AC conductivity, abrasion, and oil resistance. The diffusion of blend composites was decreased with an increase in penetrant size. The diffusion mechanism was found to follow an anomalous trend. Among the blend composites, the sample with 7 phr of HA not only showed good oil and solvent resistance but also a remarkable increase in AC conductivity and mechanical properties.  相似文献   

12.
The incorporation of fillers into elastomers has profound effects on the mechanical, physical, and thermal properties of the nanocomposites that form. In this study, styrene–butadiene rubber as a matrix was reinforced separately with 10‐, 15‐, or 23‐nm CaSO4, which was synthesized by an in situ deposition technique. The mixing and compounding were performed on a two‐roll mill, and sheets were prepared in a compression‐molding machine. Properties such as the swelling index, specific gravity, tensile strength, elongation at break, modulus at 300% elongation, Young's modulus, hardness, and abrasion resistance were measured. The morphology of the rubber nanocomposites was also performed with scanning electron microscopy to study the dispersion of the nanofiller in the rubber matrix. The thermal decomposition of the rubber nanocomposites was studied with thermogravimetric analysis, and the results were compared with those of commercial CaSO4‐filled styrene–butadiene rubber. A reduction in the nanosizes of CaSO4 led to an enhancement of the mechanical, physical, and thermal properties of the rubber nanocomposites. Above a 10 wt % filler loading, the styrene–butadiene rubber showed a reduction in all properties. This effect was observed because of the agglomeration of the nanoparticles in the rubber matrix. The thermodynamic parameters were also studied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2018–2026, 2007  相似文献   

13.
Blends of plasticized poly(vinyl chloride) (PVC) with several ratios of nitrile rubber (NBR) were studied. The effects of epoxidized sunflower oil (ESO) in combination with di-(2-ethylhexyl)phthalate (DEHP) in the PVC blends on the tensile strength, elongation, hardness, and dynamical mechanical analysis (DMA) were studied. The modulus and hardness results revealed that the addition of ESO to the blend favors the miscibility of PVC and NBR. The PVC/NBR/(DEHP-ESO) blends behave as a compatible system as is evident from the single T g observed in DMA. The moderate level broadening of the T g zone in blends is due to the presence of ESO in the plasticizer system. Blends of plasticized PVC and nitrile rubber showed promising properties. The ESO is suitable to partially replace DEHP in PVC/NBR blends.  相似文献   

14.
Triblock copolymer (TCP)‐based thermoplastic elastomers (TPEs) were designed via reversible addition–fragmentation chain‐transfer emulsion polymerization. Short isobornyl methacrylate (IM) building blocks in the two ends of molecular chain were incorporated to guarantee the mechanical properties of the TPEs at high temperature (i.e., heat resistance) because of the high glass‐transition temperature (Tg) of poly(isobornyl methacrylate) (PIM; ~180 °C). The microphase separation, tensile properties at different temperatures, dynamic mechanical properties, oil resistance, and thermal stability of the TPEs were extensively characterized. The TPEs had distinct microphase separation with a wide inter‐Tg interval (150–185 °C). The tensile strength and elongation at break of the TPEs decreased with increasing temperature from 25 to 100 °C because of the reduced interactions in the phase domain. Even so, the TPEs had a high elongation at break beyond 200% and little change in the tensile strength even at 100 °C together with a wide quasi‐platform stage between the Tg values in dynamic mechanical analysis; this indicated good heat resistance. Meanwhile, the TPEs had an enhanced oil resistance and a thermal stability higher than 300 °C. These TCP‐based TPEs with heat and oil resistance broaden the application potential in practical fields. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45379.  相似文献   

15.
Silica- and carbon-filled styrene butadiene rubber (SBR) were prepared. The influence of particle type and silane coupling agent on cure characteristics, physical and dynamic mechanical properties of particle-reinforced SBR were investigated. Minimum torque, maximum torque and tensile strength increased with increase of the filler content. The tensile strength and elongation at break were highest for presence of bis-(3-triethoxysilylpropyl) tetrasulfide (TESPT) in silica-filled vulcanizates. The dynamic mechanical properties show that tan δ at temperatures of ?20–0°C of the SiO2/TESPT/SBR vulcanizate was highest of all. Tan δ at temperatures of 50–70°C of the SiO2/TESPT/SBR vulcanizate was lower than carbon-filled SBR.  相似文献   

16.
Water uptake in organic coatings remains an interesting challenge for fundamental and applied researches because chemical, physical, and mechanical properties are concerned. The polymer network, which is affected by the curing program, is a key factor for water absorption. In this work, an epoxy network based on diglycidyl ether of bisphenol A and a hardener triethylentetramine was cured at different temperatures: below Tg (protocol 1) and above Tg (protocol 2). DMA, Differential Scanning Calorimetry (DSC), and FT‐IR measurements showed that both protocols allow to obtain totally cured networks. However, DSC and DMA results revealed that both cured networks present different levels of homogeneity, depending on the different curing conditions, which affect the free volume and the activation volume associated with visco‐elastic properties. The mechanical properties of free films and water sorption behaviors were investigated as function of cured conditions. It was found that protocol 1‐cured networks present higher mechanical properties and was less affected by water ingress than protocol 2‐cured systems, leading to better barrier properties. These results highlight the influence of the curing program onto the heterogeneous distribution of the epoxy network. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
In this article, phenolic nanocomposites were prepared using styrene–butadiene rubber (SBR) nanoparticles with an average particle size of about 60 nm as the toughening agent. The mechanical and thermal properties of phenolic nanocomposites and the toughening mechanism were studied thoroughly. The results showed that when adding 2.5 wt % SBR nanoparticles, the notched impact strength of phenolic nanocomposites reached the maximum value and was increased by 52%, without sacrificing the flexural performance. Meanwhile, SBR nanoparticles had no significant effect on the thermal decomposition temperature of phenolic nanocomposites. The glass‐transition temperature (Tg) of phenolic nanocomposites shifted to a lower temperature accompanying with the increasing Tg of loaded SBR, which showed there was a certain compatibility between SBR nanoparticles and phenol‐formaldehyde resin (PF). Furthermore, the analysis of Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy indicated that there existed a weak chemical interaction between SBR nanoparticles and the PF matrix. The certain compatibility and weak chemical interaction promoted the formation of a transition layer and improved the interfacial bonding, which might be important reasons for the great enhancement of the toughness for phenolic nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41533.  相似文献   

18.
Fully bio‐based soy protein isolate (SPI) resins were toughened using natural rubber (NR) and epoxidized natural rubber (ENR). Resin compositions containing up to 30 wt % NR or ENR were prepared and characterized for their physical, chemical and mechanical properties. Crosslinking between SPI and ENR was confirmed using 1H‐NMR and ATR‐FTIR. All SPI/NR resins exhibited two distinctive drops in their modulus at glass transition temperature (Tg ) and degradation temperature (Td ) at around ?50 and 215 °C, corresponding to major segmental motions of NR and SPI, respectively. SPI/ENR resins showed similar Tg and Td transitions at slightly higher temperatures. For SPI/ENR specimens the increase in ENR content from 0 to 30 wt % showed major increase in Tg from ?23 to 13 °C as a result of crosslinking between SPI and ENR. The increase in ENR content from 0 to 30 wt % increased the fracture toughness from 0.13 to 1.02 MPa with minimum loss of tensile properties. The results indicated that ENR was not only more effective in toughening SPI than NR but the tensile properties of SPI/ENR were also significantly higher than the corresponding compositions of SPI/NR. SPI/ENR green resin with higher toughness could be used as fully biodegradable thermoset resin in many applications including green composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44665.  相似文献   

19.
Through the neutralization of magnesium oxide (MgO) and methacrylic acid (MAA), magnesium methacrylate [Mg(MAA)2] was in situ prepared in styrene–butadiene rubber (SBR) and used to reinforce the SBR vulcanizates cured by dicumyl peroxide (DCP). The experimental results show that the mechanical properties, dynamic mechanical properties, optical properties, and crosslink structure of the Mg(MAA)2‐reinforced SBR vulcanizates depend on the DCP content, Mg(MAA)2 content, and the mole ratio of MgO/MAA. The formulation containing DCP 0.6–0.9 phr, Mg(MAA)2 30–40 phr, and MgO/MAA mole ratio 0.50–0.75 is recommended for good mechanical properties of the SBR vulcanizates. The tensile strength of the SBR vulcanizates is up to 31.4 MPa when the DCP content is 0.6 phr and the Mg(MAA)2 content is 30 phr. The SBR vulcanizate have good aging resistance and limited retention of tensile strength at 100°C. The SBR vulcanizates are semitransparent, and have a good combination of high hardness, high tensile strength, and elongation at break. The Tg values of the SBR vulcanizates depend largely on the DCP content, but depend less on the Mg(MAA)2 content and the MgO/MAA mole ratio. The contents of DCP, Mg(MAA)2, and the MgO/MAA mole ratio have also great effects on the E′ values of the vulcanizates. The salt crosslink density is greatly affected by the Mg(MAA)2 content and MgO/MAA mole ratio, but less affected by the DCP content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2667–2676, 2002  相似文献   

20.
Acetyl tri‐n‐butyl citrate (ATBC) and poly(ethyleneglycol)s (PEGs) with different molecular weights (from 400 to 10000) were used in this study to plasticize poly(L‐lactic acid) (PLA). The thermal and mechanical properties of the plasticized polymer are reported. Both ATBC and PEG are effective in lowering the glass transition (Tg) of PLA up to a given concentration, where the plasticizer reaches its solubility limit in the polymer (50 wt % in the case of ATBC; 15–30 wt %, depending on molecular weight, in the case of PEG). The range of applicability of PEGs as PLA plasticizers is given in terms of PEG molecular weight and concentration. The mechanical properties of plasticized PLA change with increasing plasticizer concentration. In all PLA/plasticizer systems investigated, when the blend Tg approaches room temperature, a stepwise change in the mechanical properties of the system is observed. The elongation at break drastically increases, whereas tensile strength and modulus decrease. This behavior occurs at a plasticizer concentration that depends on the Tg‐depressing efficiency of the plasticizer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1731–1738, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号