首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study was performed with commercially available phenyl trimethoxysilane (PTMS) and neoalkoxytitanate [i.e., neopentyl(diallyl)oxytri(dioctyl)phosphato titanate (LICA 12)] as coupling agents. PTMS and LICA 12 were used to treat talc and kaolin to compare their effects with untreated fillers upon incorporation into polypropylene (PP). Single‐filler PP composites (containing either talc or kaolin) and hybrid‐filler composites (containing a mix of both talc and kaolin) were compounded in a twin‐screw extruder and subsequently injection‐molded into dumbbells. The incorporation of PTMS and LICA 12 slightly decreased the tensile and flexural properties in terms of modulus and strength but increased the elongation at break for both single‐filler and hybrid‐filler composites. There was also a significant improvement in the impact strength of the composites, particularly those treated with LICA 12. The hybrid composites, through the synergistic coalescence of positive characteristics from talc and kaolin with the aid from chemical treatment provided an economically advantageous material with mechanical properties comparable to those of the single‐filler‐filled PP composites. Further investigations on flow and morphological properties were also done to correlate the mechanical properties of the single‐ and hybrid‐filler‐filled PP composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Poly(propylene‐co‐ethylene) composites with rice husk were prepared in a corotating intermeshing twin‐screw extruder using four different coupling agents. While modified maleic anhydrides such as maleated polypropylene (MAPP) and maleated polyethylene (MAPE) are commonly used as compatibilizers to improve interfacial adhesion between lignocellulosic filler and matrix, in this study, polypropylene grafted with acid comonomer (CAPP) and high‐density polyethylene grafted with acid comonomer (CAPE) were also used. The morphologies and the thermal and mechanical properties of the composites were characterized using scanning electron microscopy, thermogravimetric analysis, differential scanning analysis, tensile and impact tests. The results indicate that the base resin of the compatibilizer is an important factor in determining the effectiveness of compatibilizers for composites. Composites with PP‐based compatibilizers are more effective than PE‐based compatibilizers due to the improved wetting of the former compatibilizer in the matrix polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Polypropylene (PP) composites filled with wood flour (WF) were prepared with a twin‐screw extruder and an injection‐molding machine. Three types of ecologically friendly flame retardants (FRs) based on ammonium polyphosphate were used to improve the FR properties of the composites. The flame retardancy of the PP/WF composites was characterized with thermogravimetric analysis (TGA), vertical burn testing (UL94‐V), and limiting oxygen index (LOI) measurements. The TGA data showed that all three types of FRs could enhance the thermal stability of the PP/WF/FR systems at high temperatures and effectively increase the char residue formation. The FRs could effectively reduce the flammability of the PP/WF/FR composites by achieving V‐0 UL94‐V classification. The increased LOI also showed that the flammability of the PP/WF/FR composites was reduced with the addition of FRs. The mechanical property study revealed that, with the incorporation of FRs, the tensile strength and flexural strength were decreased, but the tensile and flexural moduli were increased in all cases. The presence of maleic anhydride grafted polypropylene (MAPP) resulted in an improvement of the filler–matrix bonding between the WF/intumescent FR and PP, and this consequently enhanced the overall mechanical properties of the composites. Morphological studies carried out with scanning electron microscopy revealed clear evidence that the adhesion at the interfacial region was enhanced with the addition of MAPP to the PP/WF/FR composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
The influence of two types of surface treatments (aminosilane and Lica‐12) on the mechanical and thermal properties of polypropylene (PP) filled with single and hybrid filler (silica and mica) was studied. An improvement in tensile properties and impact strength was found for both treatments compared to those of untreated composites. However, the filler with silane coupling agent showed better improvement compared to the filler with Lica‐12 coupling agent. This was due to better adhesion between filler and matrix. Thermal analysis indicates that surface treatments increased the nucleating ability of filler, but decreased the coefficient of thermal expansion of PP composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
The present article is twofold. One of the purposes of this work lies in the study of the impact behavior of the polypropylene/mica system incorporating an interface modifier obtained from an industrial polymerization byproduct. The interface agent used was a p‐phenylen‐bis‐maleamic grafted atactic polypropylene (aPP‐pPBMA) obtained in our labs. The other objective is to obtain a mathematical model capable of forecasting the composite properties accurately. Consequently, this work has been undertaken by using a statistical Box‐Wilson experimental design in order to model the behavior of the composite system in terms of Charpy impact parameters. Two independent variables have been considered, the amount of mica particles and of interface agent. Impact strength, maximum force, and deformation were the dependent variables in the models. The existence of critical values in mica and interface agent optimizing the impact behavior is established. Additionally, an excellent correlation between the impact strength and the strength results coming from flexural and tensile tests is found. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44619.  相似文献   

6.
The addition of organic fillers into thermoplastic polymers is an interesting issue, which has had growing consideration and experimentation during the last years. It can give rise to several advantages. First, the cost of these fillers is usually very low. Also, the organic fillers are biodegradable (thus contributing to an improved environmental impact), and finally, some mechanical and thermomechanical properties can be enhanced. In this study, the effect of the addition of different organic fillers on the mechanical properties and processability of an extrusion‐grade polypropylene were investigated. The organic fillers came from natural sources (wood, kenaf, and sago) and were compared to short glass fibers, a widely used inorganic filler. The organic fillers caused enhancements in the rigidity and thermomechanical resistance of the matrix in a way that was rather similar to the one observed for the inorganic filler. A reduction in impact strength was observed for both types of fillers. The use of an adhesion promoter could improve their behavior. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1906–1913, 2005  相似文献   

7.
In this study, the effect of Fe powder on the physical and mechanical properties of high density polyethylene (HDPE) was investigated experimentally. HDPE and HDPE containing 5, 10, and 15 vol % Fe metal–polymer composites were prepared with a twin screw extruder and injection molding. After this, fracture surface, the modulus of elasticity, yield and tensile strength, % elongation, Izod impact strength (notched), hardness (Shore D), Vicat softening point, heat deflection temperature (HDT), melt flow index (MFI), and melting temperature (Tm) were determined, for each sample. When the physical and mechanical properties of the composites were compared with the results of unfilled HDPE, it was found that the yield and tensile strength, % elongation, and Izod impact strength of HDPE decreased with the vol % of Fe. As compared with the tensile strength and % elongation of unfilled HDPE, tensile strength and % elongation of 15 vol % Fe filled HDPE were lower, about 17.40% and 94.75% respectively. On the other hand, addition of Fe into HDPE increased the modulus of elasticity, hardness, Vicat softening, MFI, and HDT values, such that 15 vol % Fe increased the modulus of elasticity to about 48%. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

8.
In this study, polypropylene random copolymer (PPR) composites were prepared by the addition of either three kinds of thermoplastic rubber (TPR) modifiers (types 2088A, 2095, and 2096) or an ethylene–octene copolymer (POE)/high‐density polyethylene (HDPE; 2 :1 w/w) blend. Differential scanning calorimetry, wide‐angle X‐ray diffraction, and dynamic mechanical analysis were used to characterize the crystallization behaviors and dynamic mechanical properties of the PPR composites. The results indicated that PPR/POE/HDPE and PPR/TPR2088A had better comprehensive mechanical properties, especially the low‐temperature toughness among all of the samples. The obtained PPR/POE/HDPE blends showed a high toughness and good stiffness in the temperature interval from ?10 to 23°C with the addition of only 10 wt % POE/HDPE. When the temperature continued to fall below ?10°C, the PPR/TPR2088A composites exhibited a better impact toughness without a loss of too much stiffness. The good low‐temperature toughness of those two composites was attributed to both the decrease in the crystallinity and the uniform dispersion, obvious interfacial adhesion, and cavitation ability of POE/HDPE and TPR2088A in the PPR matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42960.  相似文献   

9.
This study exhibited an approach of high‐value utilization of straw fiber (SF) in polymer composites. The rigid poly(vinyl chloride) [PVC]/SF and PVC/SF coated with liquid nitrile‐butadiene rubber (PVC/LNBR‐SF) composites were both fabricated by melt mixing. The chemical structure and crystal structure of LNBR‐SF were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and X‐ray diffraction (XRD). The mechanical properties and micro‐structure of PVC/SF and PVC/LNBR‐SF composites were also studied. FTIR and XRD results showed that the chemical structure and crystal structure of SF did not change after modifying with LNBR. The mechanical properties analysis showed that the PVC/LNBR‐SF composites exhibited better tensile strength, elongation at break and notched impact strength than those of PVC/SF composites owing to the compatibilization and toughening effect of LNBR. Scanning electron microscope results indicated that the LNBR improved the dispersion of SF in PVC matrix to some extent. The interface adhesion between SF and PVC matrix with adding LNBR was also enhanced. These results suggested that PVC/LNBR‐SF composites exhibited promising potential for practical application in substitute for wood. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44119.  相似文献   

10.
Enhancement of tensile strength, impact strength, and flexural strength of polypropylene/short glass fiber composites by treating the glass fibers with coupling agent, mixing with maleated polypropylene (MPP) for compatibilization and adhesion, and with nucleating agent for improvement of polypropylene crystallization was studied. The results showed that both the silane coupling agent and MPP enhance tensile strength, impact strength, and flexural strength. In the absence of MPP, the effect of silane coupling agent on the mechanical properties of the composites decreases in the following order: alkyl trimethoxy silane (WD‐10) > γ‐methacryloxypropyl trimethoxysilane (WD‐70) > N‐(β‐aminoethyl)‐γ‐aminopropyl trimethoxysilane (WD‐52), whereas in the presence of MPP, the order changes as follows: WD‐70 > WD‐10 > WD‐52. When the glass fibers were treated with WD‐52, 4,4‐diamino‐diphenylmethane bismaleimide (BMI) can further enhance the mechanical properties of the composite. The three kinds of strengths increase with MPP amount to maximum values at 5% MPP. As a nucleating agent, adipic acid is better than disodium phthalate in improving the mechanical properties, except for the notched impact strength. Wide‐angle X‐ray diffraction showed that the adipic acid is an α‐type nucleating agent, whereas disodium phthalate is a β‐type nucleating agent. Blending with styrene–butadiene rubber can somewhat improve the notched impact strength of the composites, but severely lowers the tensile strength and bending strength. Scanning electron micrographs of the broken surface of the composite showed greater interfacial adhesion between the glass fibers and polypropylene in the modified composite than that without modification. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1414–1420, 2005  相似文献   

11.
Recently, graphene and its derivatives have been used to develop polymer composites with improved or multifunctional properties. Exfoliated graphite nanoplatelets (GNP) reinforced composite materials based on blend of polyethylene terephthalate (PET), and polypropylene (PP) compatibilized with styrene–ethylene–butylene–styrene‐g‐maleic anhydride is prepared by melt extrusion followed by injection molding. Characterization of the composites' microstructure and morphology was conducted using field emission scanning electron microscopy, transmission electron microscopy (TEM), X‐ray diffraction analysis (XRD), and Fourier transform infrared spectroscopy (FTIR). Tensile and impact strengths of test specimens were evaluated and the results showed maximum values at 3phr GNP in both the cases. Morphological studies showed that the GNPs were uniformly dispersed within the matrix. Results from XRD analysis showed uniformly dispersed GNPs, which may not have been substantially exfoliated. FTIR spectroscopy did not show any significant change in the peak positions to suggest definitive chemical interaction between GNP and the matrix. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40582.  相似文献   

12.
The influence of starch on the properties of carbon‐black‐filled styrene–butadiene rubber (SBR) composites was investigated. When the starch particles were directly melt‐mixed into rubber, the stress at 300% elongation and abrasion resistance decreased evidently with increasing starch amount from 5 to 20 phr. Scanning electron microscopy observations of the abrasion surface showed that some apparent craters of starch particles were left on the surface of the composite, which strongly suggested that the starch particles were large and that interfacial adhesion between the starch and rubber was relatively weak. To improve the dispersion of the starch in the rubber matrix, starch/SBR master batches were prepared by a latex compounding method. Compared with the direct mixing of the starch particles into rubber, the incorporation of starch/SBR master batches improved the abrasion resistance of the starch/carbon black/SBR composites. With starch/SBR master batches, no holes of starch particles were left on the surface; this suggested that the interfacial strength was improved because of the fine dispersion of starch. Dynamic mechanical thermal analysis showed that the loss factor at both 0 and 60°C increased with increasing amount of starch at a small tensile deformation of 0.1%, whereas at a large tensile strain of 5%, the loss factor at 60°C decreased when the starch amount was varied from 5 to 20 phr. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
The mechanical properties and phase microstructure of ternary phase polypropylene composites have been investigated using combinations of rigid glass beads and ethylene/propylene rubber (EPR) modifiers. Particular consideration has been given to the relative interaction between these components and their dispersion within the composite. In this regard, EPR and untreated glass beads existed as independent phases, whereas EPR functionalized with maleic anhydride showed a tendency to encapsulate the inorganic phase. As a consequence, marked differences in mechanical properties, in particular toughness, were exhibited by these systems, manifested by changes in failure mechanism. Structure in these composites was explored by Fourier transform infrared spectroscopy, dynamic mechanical analysis, and scanning electron microscopy. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 587–597, 1998  相似文献   

14.
The effects of various filler concentrations (0.1, 0.5, 1, 1.5, 2, 2.5, and 3 wt %) on the tribological and mechanical properties of carbon‐nanofiber (CNF)‐filled polytetrafluoroethylene (PTFE) composites were studied. Moreover, the influence of various loads (50, 100, 150, and 200 N) and sliding velocities (0.692 and 1.39 m/s) on the friction and wear behaviors of the PTFE composites was investigated. The results showed that the friction coefficients of the PTFE composites decreased initially up to a 0.5 wt % filler concentration and then increased, whereas the antiwear properties of the PTFE composites increased by 1–2 orders of magnitude in comparison with those of pure PTFE. The composite with a 2 wt % filler concentration had the best antiwear properties under all friction conditions. The friction coefficients of the CNF/PTFE composites decreased with increases in the load and sliding velocity, whereas the wear volume loss of the PTFE composites increased. At the same time, the results also indicated that the mechanical properties of the PTFE composites increased first up to a 1 wt % filler concentration and then decreased as the filler concentration was increased above 1 wt %. In comparison with pure PTFE, the impact strength, tensile strength, and elongation to break of the PTFE composites increased by 40, 20, and 70%, respectively, at a 1 wt % filler concentration. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2430–2437, 2007  相似文献   

15.
In this research, polypropylene/wood‐flour composites (WPCs) were blended with different contents of wood and/or maleated polypropylene (MAPP) and clay. We found that the addition of MAPP or clay in the formulation greatly improved the dispersion of the wood fibers in the composite; this suggested that MAPP or clay may have played the role of an adhesion promoter in the WPCs. The results obtained with clay indicate that it also acted as a flame retardant. The thermal tests carried out with the produced samples showed an increased crystallization temperature (Tc), crystallinity, and melting temperature (Tm) with wood loading. The increase of the two former parameters was explained by the incorporation of wood flour, which played the role of nucleating agent and induced the crystallization of the matrix polymer. On the other hand, the Tm increase was ascribed to the insulating properties of wood, which hindered the movement of heat conduction. The effects of UV irradiation on Tm and Tc were also examined. Tc increased with UV exposure time; this implied that UV degradation generated short chains with low molecular weight that could move easily in the bulk of the sample and, thus, catalyze early crystallization. The flexural strength and modulus increased with increasing wood‐flour content. In contrast, the impact strength and tensile strength and strain decreased with increasing wood‐flour content. All of these changes were related to the level of dispersion of the wood flour in the polymeric matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Polypropylene (PP) or, in some cases, poly (lactic acid) (PLA) were compounded with cellulosic fibres. The amount of fibres used was in the range 10–30 vol % and, in case of PP, a series of compounds was prepared with a minor amount of maleated PP as a compatibiliser. This matrix was denoted MAPP. Before compounding the polymers and the fibres, undelaminated bentonite (industrial scale) or delaminated clay (nanoclay) was deposited on the fibres in different amounts to improve the dispersion of the fibres in the polymer matrix, i. e., to avoid detrimental fibre bundles. The PP‐based compounds were either extruded or injection moulded, whereas the PLA‐compounds were only injection moulded. The mechanical properties were primarily evaluated for the injection moulded specimens. In general, the fibres had a strong effect on the mechanical behaviour of the materials, especially in the case of PLA and MAPP. Treating the fibres with undelaminated clay or nanoclay improved to some extent the dispersion of the fibres and the mechanical performance of the composites, but further optimization of the function of the mineral in this respect is probably required. The combination of the mineral treatment with a debonding agent appeared to be an interesting route here. With such a combination, a visually very good dispersion of the fibres in the PP‐based matrix could be obtained, partly at the expense of the mechanical performance. The compounding of the cellulosic fibres with PP led in this case to a marked decrease in the fibre length. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

17.
Kenaf (KNF)‐filled polypropylene/waste tire dust (PP/WTD) composites containing different KNF loadings (0, 5, 10, 15, and 20 parts per hundred parts of resin (phr)) were prepared using a Thermo Haake Polydrive internal mixer. The influence of the KNF form (KNF short fiber (KNFs) and KNF powder (KNFp)) at different KNF loadings on properties of the composites was studied. Results showed that with increasing KNF loading, the stabilization torque, tensile modulus, water absorption, and thermal properties increased for both KNFp‐ and KNFs‐filled PP/WTD composites. However, the tensile strength and elongation at break decreased by 29.2% and 53.9%, respectively, for KNFp‐filled PP/WTD composites, whereas KNFs‐filled PP/WTD composites showed a decrement of 24.5% and 63.5%, respectively. The stabilization torque, tensile strength, and tensile modulus increased by 22.4%, 6.7%, and 2.6%, respectively, for KNFs‐filled PP/WTD composites at 20 phr KNF loading. The scanning electron microscopy morphological studies on the tensile fractured surfaces revealed poor adhesion between KNFp and PP/WTD matrices as compared to KNFs and PP/WTD matrices. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40877.  相似文献   

18.
Two unsaturated polyester resins based on poly[propylene‐phthalate‐hexane‐maleate] (PE1) and poly[oxydiethylene‐phthalate‐hexane‐maleate] (PE2) were prepared and crosslinked with styrene monomer. The structure of the prepared polyesters was detected using IR and NMR. The thermal behavior of the styrenated polyesters was determined using differential scanning calorimetry. The dielectric properties for the PE1 and PE2 styrenated polyesters and their mixtures with different ratios were also studied with a frequency range of 100 Hz to 100 kHz at room temperature (≈25°C). The mixture containing a 50/50 ratio of PE1/PE2 possessed the most promising dielectric properties. Thus, this sample was chosen along with the two separate styrenated polyesters to be loaded with three different types of fillers: calcium carbonate, clay, and quartz. This investigation led to the conclusion that the sample containing 50/50 PE1/PE2 loaded with 60–70% clay possessed the most promising dielectric properties. The compressive and tensile strength values were also studied for PE1, PE2, and their 50/50 mixture filled with the three types of fillers with the recommended concentrations (60 and 70%). The results indicated that the quartz composite (60%) had the best mechanical properties with respect to the clay and calcium carbonate. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1167–1180, 2002  相似文献   

19.
A novel composite material consisting of polypropylene (PP) fibers in a random poly(propylene‐co‐ethylene) (PPE) matrix was prepared and its properties were evaluated. The thermal and mechanical properties of PP–PPE composites were studied by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) with reference to the fiber concentration. Although, by increasing PP fiber concentration in PPE, no significant difference was found in melting and crystallization temperatures of the PPE, the storage, and the tensile and flexural modulus of the composites increased linearly with fiber concentrations up to 50%, 1.5, 1.0, 1.3 GPa, respectively, which was approximately four times higher than that for the pure PPE. There is a shift in glass transition temperature of the composite with increasing fiber concentration in the composite and the damping peak became flatter, which indicates the effectiveness of fiber–matrix interaction. A higher concentration of long fibers (>50% w/w) resulted in fiber packing problems, difficulty in dispersion, and an increase in void content, which led to a reduction in modulus. Cox–Krenchel and Haplin–Tsai equations were used to predict tensile modulus of random fiber‐reinforced composites. A Cole–Cole analysis was performed to understand the phase behavior of the composites. A master curve was constructed based on time–temperature superposition (TTS) by using data over the temperature range from −50 to 90°C, which allowed for the prediction of very long and short time behavior of the composite. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2260–2272, 2005  相似文献   

20.
The factors influencing the mechanical properties of styrene–butadiene–styrene block copolymer (SBS) composites filled with liquid polybutadiene (LB)‐surface‐treated calcium carbonate (CaCO3) were investigated with respect to the molecular structure of the LB, the amount of the LB adsorbed on the CaCO3 surface, the heat treatment conditions, and the surface treatment method. The mechanical properties, such as the modulus, tensile strength at break, tear strength, storage modulus, and tension set, of the SBS composites were improved remarkably through the filling of CaCO3 surface‐treated with a carboxylated LB with a high content of 1,2‐double bonds. The heat treatment of LB–CaCO3 in air was also effective in enhancing such properties. When SBS, CaCO3, and LB were directly blended (with the integral blend method), secondary aggregation of CaCO3 took place, and the mechanical properties of the composite were significantly lower. In the integral blend method, LB functioned as a plasticizer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号