首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fully aromatic thermotropic liquid crystalline polyester (TLCP) has been blended with poly(ether ether ketone) (PEEK). Multiblock copolymer (BCP) was used as the compatibilizer in the concentration at 2 phr. The isothermal crystallization kinetics and morphology of compatibilized blends were studied using differential scanning calorimetry (DSC) and polar light micrograph (PLM). TLCP acted as a heterogenous nucleation sites to accelerate the crystallization for PEEK. However, PEEK crystallization rates decreased with increasing TLCP fraction. Isothermal crystallization exotherms showed that the addition of BCP retarded crystallization of PEEK in PEEK/TLCP blend, which was probably resulted from the constraint effect of BCP as well as the size reduction of PEEK spherulite domain. The equilibrium melting temperature of PEEK for blends was below that of pure PEEK. After adding BCP, it decreased further. Morphological analysis showed that it was difficult to discern the single PEEK spherulites when BCP was added. POLYM. COMPOS., 27:642–650, 2006. © 2006 Society of Plastics Engineers  相似文献   

2.
A series of thio‐containing poly(ether ether ketone) (PEESK) polymers was synthesized by the introduction of thio groups from 4,4′ thiodiphenol (TDP) into the poly(ether ether ketone) (PEEK) structure via reaction between the phenol and aromatic fluoride groups. The effect of the thio groups on the properties of the PEESK materials was investigated. Differential scanning calorimetry (DSC) analysis and X‐ray diffraction (XRD) patterns show a depression in the crystallinity of the PEESKs with incorporation of the content of thio groups in the backbones. The crystalline structure was identified as an orthorhombic structure with lattice constants of a = 7.52 Å, b = 5.86 Å and c = 10.24 Å for all crystallizable PEESKs. The crystalline structures of the thio‐containing PEEK polymers were the same as that of the neat PEEK, which means the thio‐containing block in the whole thio‐containing PEEK molecule is almost excluded from the crystalline structure and the crystals are completely formed by ‘non‐thio’ blocks only. Due to the glass transition temperature (Tg) and melting temperature (Tm) depression with increase in the TDP content in the reaction system, the processability of the resultant thio‐containing PEEKs could be effectively improved. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
Rheological properties of the blends of poly(aryl ether ether ketone) (PEEK) with liquid crystalline poly(aryl ether ketone) containing substituted 3‐trifluoromethylbenzene side group (F‐PAEK), prepared by solution precipitation, have been investigated by rheometer. Dynamic rheological behaviors of the blends under the oscillatory shear mode are strongly dependent on blend composition. For PEEK‐rich blends, the systems show flow curves similar to those of the pure PEEK, i.e., dynamic storage modulus G′ is larger than dynamic loss modulus G″, showing the feature of elastic fluid. For F‐PAEK‐rich systems, the rheological behavior of the blends has a resemblance to pure F‐PAEK, i.e., G″ is greater than G′, showing the characteristic of viscous fluid. When the PEEK content is in the range of 50–70%, the blends exhibit an unusual rheological behavior, which is the result of phase inversion between the two components. Moreover, as a whole, the complex viscosity values of the blends are between those of two pure polymers and decrease with increasing F‐PAEK content. However, at 50% weight fraction of PEEK, the viscosity‐composition curves exhibit a local maximum, which may be mainly attributed to the phase separation of two components at such a composition. The changes of G′ and G″ with composition show a trend similar to that of complex viscosity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4040–4044, 2006  相似文献   

4.
综述了聚醚醚酮(PEEK)、聚醚酰亚胺(PEI)、聚四氟乙烯(PTFE)、热致液晶(TLCP)和聚醚砜(PES)等高性能工程塑料的共混改性研究进展,详细探讨了各种PEEK共混物的相容性、结晶行为、微观结构、热行为和力学性能等性能特征。PEEK与PEI在熔融和无定形状态下完全相容,常用于PEEK的结晶行为和微观结构的基础研究;与PTFE、TLCP、PES共混分别是提高PEEK的摩擦磨损性能、加工性能和热稳定性的有效手段。各种共混物的相容性好坏对其结晶行为和微观结构有重要影响,从而影响了共混物的力学性能。在此基础上,对PEEK共混改性领域进一步的研究方向和内容进行了讨论。  相似文献   

5.
A series of modified poly(ether ether ketone) (PEEK) polymers were synthesized by introduction of addition ether groups from dihydroxydiphenyl ether (DHDE) into the PEEK structure. The inherent viscosity of the DHDE-modified PEEK increased with reaction time at 320 °C. DSC thermograms showed the melting points of the obtained PEEK decreased with the increase of the DHDE content in the backbone. The degradation temperature (Td) was slightly decreased by the introduction of DHDE. The crystallinity as measured via the X-ray diffraction (XRD) increases with the introduction of DHDE into the modified PEEK. The crystalline structure was identified as an orthorhombic structure with lattice constants a = 7.72 Å, b = 5.86 Å, and c = 10.24 Å. Due to the glass transition temperature (Tg) and the melting temperature (Tm) decreasing with the increase of the DHDE content in the reaction system. the processability of the resultant PEEK could be improved through this DHDE modification.  相似文献   

6.
The crystallization and multiple melting behavior of poly(phenylene sulfide) (PPS) and its blends with amorphous thermoplastic bisphenol A polysulfone (PSF) and phenolphthalein poly(ether ketone) (PEK-C), crystalline thermoplastic poly(ether ether ketone) (PEEK), and thermosetting bismaleimide (BMI) resin were investigated by a differential scanning calorimeter (DSC). The addition of PSF and PEK-C was found to have no influence on the crystallization temperature (Tc) and heat of crystallization (ΔHc) of PPS. A significant increase in the value of Tc and the intensity of the Tc peak of PPS was observed and the crystallization of PPS can be accelerated in the presence of the PEEK component. An increase in the Tc of PPS can also be accelerated in the BMI/PPS blend, but was no more significant than that in the PEEK/PPS blend. The Tc of PPS in the PEEK/PPS blends is dependent on the maximum temperature of the heating scans and can be divided into three temperature regions. The addition of a second component has no influence on the formation of a multiple melting peak. The double melting peaks can also be observed when PPS and its blends are crystallized dynamically from the molten state. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 637–644, 1998  相似文献   

7.
The thermal properties of blends of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) prepared by screw extrusion were investigated by differential scanning calorimetry. From the thermal analysis of amorphous PEEK–PEI blends which were obtained by quenching in liquid nitrogen, a single glass transition temperature (Tg) and negative excess heat capacities of mixing were observed with the blend composition. These results indicate that there is a favorable interaction between the PEEK and PEI in the blends and that there is miscibility between the two components. From the Lu and Weiss equation and a modified equation from this work, the polymer–polymer interaction parameter (χ12) of the amorphous PEEK–PEI blends was calculated and found to range from −0.058 to −0.196 for the extruded blends with the compositions. The χ12 values calculated from this work appear to be lower than the χ12 values calculated from the Lu and Weiss equation. The χ12 values calculated from the Tg method both ways decreased with increase of the PEI weight fraction. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 733–739, 1999  相似文献   

8.
Novel poly(ether ether ketone)-block-polyimide copolymers (PEEK-b-PI) with different block length were prepared by the polycondensation of amino-terminated poly(ether ether ketone) oligomer and anhydride-terminated polyamic acid oligomer. As the compatibility agent, PEEK-b-PI was added to the poly(ether ether ketone)/thermoplastic polyimide (PEEK/TPI) blend, and blends of PEEK/TPI/PEEK-b-PI were prepared by melt extrusion. Morphology observation showed the domain size of the dispersed phase was significantly reduced with the addition of PEEK-b-PI having optimized block length, which suggested reduced interfacial tension and enhanced interfacial adhesion. The compatibilizing effect was further proven by the change of the glass transition temperature of PEEK and TPI, which shifted closer to each other. As a result, the mechanical properties of PEEK/TPI blends were significantly improved with the addition of the PEEK-b-PI. In particular, 5 wt% content of PEEK-b-PI can increase the elongation at break of the blend by about 200%.  相似文献   

9.
The miscibility and phase behavior of polysulfone (PSF) and poly(hydroxyether of bisphenol A) (phenoxy) with a series of copoly (ether ether ketone) (COPEEK), a random copolymer of poly(ether ether ketone) (PEEK), and phenolphthalein poly(ether ether ketone) (PEK-C) was studied using differential scanning calorimetry. A COPEEK copolymer containing 6 mol % ether ether ketone (EEK) repeat units is miscible with PSF, whereas copolymers containing 12mol % EEK and more are not. COPEEK copolymers containing 6 and 12 mol % EEK are completely miscible with phenoxy, but those containing 24 mol % EEK is partially miscible with phenoxy. Moreover, a copolymer containing 17 mol % EEK is partially miscible with phenoxy; the blends show two transitions in the midcomposition region and single transitions at either extreme. Two Tgs were observed for the 50/50 blend of phenoxy with the coplymer containing 17 mol % EEK, whereas a single composition-dependent Tg appeared for all the other compositions. An FTIR study revealed that there exist hydrogen-bonding interactions between phenoxy and the copolymers. The strengths of the hydrogen-bonding interactions in the blends of the COPEEK copolymers containing 6 and 12 mol % EEK are the same as that in the phenoxy/PEK-C blend. However, for the blends of copolymers containing 17, 24, and 28 mol % EEK, the hydrogen-bonding interactions become increasingly unfavorable and the self-association of the hydroxyl groups of phenoxy is preferable as the content of EEK units in the copolymer increases. The observed miscibility was interpreted qualitatively in terms of the mean-field approach. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
A new low melting temperature poly(aryl ether ketone) (PAEK) thermoplastic polymer (Victrex AE 250) was investigated through thermal and rheological analysis of films and flakes. DSC was assigned to evaluate the influence of cooling rate on crystallinity and thermal transitions. Rheometry was used to assess its flowing behavior through the evaluation of dynamic moduli and complex viscosity in the melted state. The relaxation times were found from the rheological curves: they are between a few ms to 200 ms for AE 250, lower than those found for PEEK 450, meaning a faster mobility of macromolecules. The thermal activation energy, Ea obtained from Time Temperature Superposition is the same for films and flakes in spite of a lower viscosity for flakes. The molecular weight between entanglements is evaluated at 8000 g.mol−1 for FMc and 13,000 for FLc, it is compared to the value of about 2000 g.mol−1 found for PEEK 450 with the same procedure. Also, the viscosity was compared to other commercial PAEK such as PEEK and PEKK based on data from the literature. This polymer appears very efficient to compete with high performance thermoplastics to be processed by compression molding, out of autoclave consolidation, additive manufacturing, and welding.  相似文献   

11.
A series of well‐defined poly(ether ketone ketone) (PEKK)/sodium sulfonated poly(aryl ether ketone) (S‐PAEK) block copolymers of high molecular weights was prepared by direct nucleophilic polymerization of hydroquinone with sodium 5,5′‐carbonylbis(2‐fluorobenzene sulfonate) ( 1 ) and PEKK oligomer ( 2 ). Varying the ratio of 1 to 2 used in polymerization can be used to control the degree of polymer sulfonation, which correspondingly affects the polymer solubility in solvents. Increasing content of 1 in the copolymers, slightly decreases their thermal stability which is nevertheless thermally stable up to 400 °C. Two Tg values, or one broad Tg, were observed in the DSC measurements of the block copolymers, indicating the existence of phase separation, which was further proved by phase‐separated morphologies as shown in atomic force microscopy images. © 2001 Society of Chemical Industry  相似文献   

12.
Silane-terminated poly(ether ether ketone) oligomers were synthesized and grafted onto wollastonite (W) particles. The prepared grafted-wollastonite particles (g-W) were then incorporated into PEEK matrix via melt processing. Properties of the PEEK composites were investigated using differential scanning calorimetry (DSC), universal tester and rheometer. The researchers found the mechanical properties of the PEEK/g-W composites were markedly enhanced, complex viscosity of the PEEK/g-W composites increased, and both the peak crystallization temperature (T c ) and crystalline fraction (χ c ) of the PEEK composites with g-W were significant higher compared with those of the PEEK composites with W. It is our belief that these results are due to the strong interaction between the grafted-wollastonite particles and the PEEK matrix.  相似文献   

13.
The addition of a thermotropic liquid crystalline, wholly aromatic copolyester, TLCP, improved the melt processability of poly(ether ketone ketone), PEKK. The tensile strength and modulus of the blends also improved with increasing TLCP, but the elongation at break decreased significantly. The blends were phase‐separated, but the polymers were partially miscible as evident from shifts of the glass transition temperature (Tg) of each component towards that of the other component in the blend. Similarly, the melting points (Tm) of both components were depressed by blending. When the crystallization temperature was above Tm of the TLCP, the PEKK crystallization rate in the blend was slower than for the pure material, while crystallization was faster when the temperature was below Tm of the TLCP. Polym. Eng. Sci. 44:541–547, 2004. © 2004 Society of Plastics Engineers.  相似文献   

14.
The fabrication of honeycomb‐patterned films from nitryl poly(ether ether ketone)s (PEEK‐NO2) in a high‐humidity atmosphere was reported in this article. PEEK‐NO2 was prepared through acid (nitric acid and sulfuric acid) nitration from poly(ether ether ketone)s (PEEK). The obtained polymer, which was characterized by Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), and differential scanning calorimetry (DSC) showed excellent solubility and thermal stability. Some influence factors on the pattern formation and the fabrication of the porous structure, such as the solution concentration, the solvent, and the atmosphere humidity, were investigated. The results showed that with the increase of the solution concentration, the aperture of the film diminished gradually; the lower the solvents´ boiling point were, the smaller the films´ apertures were and the more regular the pores´ arrange; only under high‐humidity circumstances could obvious and ordered honeycomb films be formed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Interest in developing high-performance blends for niche applications has grown significantly in efforts to meet ever-increasing harsh environment demands. In this work, four model poly(aryl-ether-ketone)/polybenzimidazole (PAEK/PBI) blends were chosen to study the influence of premixing methods, processing, and matrix polymers, on their mechanical properties. Among the model poly(ether ether ketone) (PEEK) and PBI blends, mechanical properties are greatly enhanced by melt premixing. The molding process mainly affects the matrix crystallinity, which in turn greatly influences fracture toughness of the blend. Poly(ether ketone ketone) (PEKK) and PBI blend exhibits a slightly lower tensile strength and fracture toughness than PEEK/PBI due to the differences in inherent properties of PEEK and PEKK matrices and their interfacial interaction with PBI. The processing−structure–property relationship of PAEK/PBI blends is established to help guide optimal design of high-performance polymer blends for structural applications. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48966.  相似文献   

16.
Binary blends of the sulfonated poly(ether ether ketone) (SPEEK)–poly(ether imide) (PEI) and SPEEK–polycarbonate (PC), and ternary blends of the SPEEK–PEI–PC, were investigated by differential scanning calorimetry. SPEEK was obtained by sulfonation of poly(ether ether ketone) using 95% sulfuric acid. From the thermal analysis of the SPEEK–PEI blends, single glass transition temperature (Tg) was observed at all the blend composition. For the SPEEK–PC blends, double Tgs were observed. From the results of thermal analysis, it is suggested that the SPEEK–PEI blends are miscible and the SPEEK–PC blends are immiscible. Polymer–polymer interaction parameter (χ12) of the SPEEK–PEI blends was calculated from the modified Lu and Weiss equation, and found to range from −0.011 to −0.825 with the blend composition. For the SPEEK–PC blends, the χ12 values were calculated from the modified Flory–Huggins equation, and found to range from 0.191 to 0.272 with the blend composition. For the SPEEK–PEI–PC ternary blends, phase separation regions that showed two Tgs were found to be consistent with the spinodal curves calculated from the χ12 values of the three binary blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2488–2494, 2000  相似文献   

17.
Results on solution-blended poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) blends are reported. Dichloroacetic acid was used as the cosolvent for blending. PEEK and PEI are confirmed to be miscible in the melt. The glass transition, Tg, behavior obeys the simple Fox equation or the Gordon-Taylor equation with the adjustable coefficient k = 0.86. This agrees with prior data on melt-blended PEEK/PEI blends. The Tg width of the amorphous PEEK/PEI blends was found to be broader than that of the pure components. The maximum broadening is about 10°C. The specific volume of the amorphous PEEK/PEI blends shows a slight negative deviation from linearity, indicating favorable interaction between PEEK and PEI. The spherulitic growth and resultant blend morphology at 270°C were studied by a cross-polarized optical microscope. The radial growth rate of PEEK spherulites formed from the miscible melt at 270°C decreases from 3.04 μm/min for PEEK/PEI 90/10 blend to 0.77 μm/min for PEEK/PEI 70/30 blend. The decrease in crystalization rate of PEEK from PEEK/PEI blends is attributable to the increase in blend Tg. A linear growth was observed for PEEK spherulites formed from miscible melt at 270°C in the early growth stage. The spherulitic growth deviated from linearity in the late stage of growth. PEEK spherulites formed from the miscible PEEK/PEI melt at 270°C are essentially volume-filling. The branches of the spherulites become more clear for PEEK spherulites formed from the blend than that formed from pure PEEK melt.  相似文献   

18.
Poly(ether ether ketone), PEEK, was functionalized by addition of pendant functional groups, that is, acetyl, carboxylic, acyl chloride, amide, and amine groups in the benzene ring of polymer backbone without substituting the parent (ether or ketonic) functional groups of polymer to improve the mechanical and surface adhesivity with acellular inorganic biomaterials. The functional groups of virgin PEEK and functionalized PEEK were identified by Fourier transform infrared spectroscopy and 13C nuclear magnetic resonance. The crystallinity was studied by X‐ray diffraction and further supported by differential scanning calorimetry (DSC) analysis. Similarly, the change in glass transition temperature was confirmed by the DSC and dynamic mechanical analysis (DMA). The improved mechanical property was also evaluated by DMA. The excellent surface adhesivity and bioactivity were revealed by acellular in vitro test using simulated body fluid. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
The physical form of polymers is often important for carrying out subsequent processing operations. For example, fine powders are desirable for molding and sintering compounds because they consolidate to produce void free components. The objective of this work is to prepare fine polymeric particulates suitable for processing into fiber reinforced polymer matrix composites. Micron size particles of poly(ether ether ketone) (PEEK) were prepared by rapidly quenching solutions of these materials. PEEK pellets were dissolved at temperatures near the PEEK melting point in a mixture of terphenyls and quaterphenyls; then the solution was quenched to a temperature between the Tg and Tm (≈ 225°C) by adding a room temperature eutectic mixture of diphenyl ether and biphenyl. A supersaturated, metastable solution of PEEK resulted, causing rapid nucleation. Fine PEEK particles rapidly crystallized from this solution. The average particle size was measured using transmission electron microscopy, atomic force microscopy, and by light scattering of aqueous suspensions which had been fractionated by centrifugation. The average particle diameter was about 0.6 μm. Three dimensional photomicrographs obtained via atomic force microscopy showed some aggregates in the suspensions. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1571–1578, 1997  相似文献   

20.
Crystallinity and mechanical properties of blends with different amounts of semicrystalline poly(aryl/ ether ether ketone) (PEEK) and amorphous poly(ether imide) (PEI) polymers have been studied. The blends, prepared by melt mixing, have been investigated by differential scanning calorimeter (DSC) to analyze the miscibility between the components and the final crystalline content. Moreover, for the 20/80 PEEK/PEI blend, crystallization in dynamic and isothermal conditions has been carefully investigated in order to find proper conditions for maximum development of crystallinity. Mechanical tests (static and dynamic) have been performed to evaluate the properties of the as-molded and crystallized blends and to compare them with those of crystalline PEEK and amorphous PEI neat resins. Finally, a few SEM observations have been performed to compare the fractured surface of the blend with those of the pure constituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号