首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to reliably engineer surfaces with nanoscale precision is a rapidly developing field of research with applications ranging from biosensing and biomedical materials to antifouling and corrosion protection. The layer‐by‐layer (LbL) approach is a widely utilized method for engineering surfaces, in part because of the large array of polymeric materials that can be integrated and the diverse range of functionality that these materials afford. Herein, we discuss the LbL deposition of multicomponent ‘blend' solutions to form polyelectrolyte blend multilayer films and coatings. This approach is a versatile platform for enhancing film stability, incorporating a wide range of functional materials, controlling film morphology and material properties, and increasing biological response, thereby expanding the range of potential applications.  相似文献   

2.
This article demonstrates the tuning of the biological activity of a surface functionalized by a polyelectrolyte multilayer. The interaction of protein A with macrophages is used as the model system. The film consists of two polypeptides, poly(lysine) and poly(glutamic acid); each “build‐up” solution is a mixture of the respective D ‐ and L ‐enantiomers (d and l enantiomers). Cells are deposited on top of the film, and they produce tumor necrosis factor alpha (TNF‐α) as they come into contact with the protein. Depending upon the d/l‐enantiomer ratio of the polyelectrolyte solutions used for the film build‐up, and the embedding depth of the protein, the production of TNF‐α commences after a varying induction time and displays a transition from no‐production to full‐production, which takes place over a period of time that depends on the film's composition and embedding depth. Thus, it is shown that by changing these two parameters the timing of the protein's activity can be accurately tuned.  相似文献   

3.
The formation of weak polyelectrolyte films on planar and spherical supports has recently evoked major interest, as such coatings allow novel material properties to be tunable by pH and salt adjustment of the polyelectrolyte deposition conditions. We report on the build up of multilayers of the weak polyelectrolytes poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) on submicrometer‐sized polystyrene (PS) and silica colloid spheres (~ 500 nm) with the aid of copper ion templating. The copper ions complex to the carboxylate groups of PAA, facilitating the formation of PAA/PAH multilayers on the particles. Regular growth of the layers on the colloid spheres with each polyelectrolyte deposition step was confirmed by microelectrophoresis, single‐particle light scattering (SPLS), and transmission electron microscopy (TEM), with an average bilayer thickness of ~ 3 nm. The polyelectrolyte multilayer‐coated particles formed stable colloidal dispersions, with ζ‐potentials ranging from 30 mV (PAH outer layer) and –50 mV (PAA outer layer). Complementary quartz‐crystal microbalance and UV‐vis spectrophotometry studies on PAA/PAH multilayers formed on planar supports were performed to examine the film formation and the role of copper ion binding to the layers. PAA/PAH multilayers formed on colloid particles were also chemically crosslinked by using the activator 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide (EDC). The degree of film crosslinking could be readily controlled by varying the concentration of EDC employed. Following solvent decomposition of the template particles coated with crosslinked PAA/PAH multilayers, intact hollow polymer capsules were obtained. These capsules were found to be impenetrable to polystyrene.  相似文献   

4.
A facile method of connecting fluorescent meso‐tetrakis(4‐sulfonatophenyl)porphine tetranion nanotubes to polyelectrolyte capsules is developed. Heat‐sensitive robust polyelectrolyte capsules consisting of poly(diallyldimethylammonium chloride) and poly(styrene sulfonate) multilayers have been fabricated using the conventional layer‐by‐layer technique. Supramolecular aggregation of porphyrin monomers to nanotubes is induced in the microenvironment of the capsules by sequential addition of salt and acid. Scanning electron microscopy, transmission electron microscopy, and atomic force microscopy images reveal satellite‐like structures consisting of a central capsule core with porphyrin nanotubes emerging radially from the capsule walls. The growth and the distribution of the porphyrin units have been monitored by UV‐vis spectroscopy, fluorescence spectroscopy, and confocal laser scanning microscopy. Changing the temperature alters the dimensions and the arrangement of the nanotubes on the capsule walls. Such an attachment of porphyrin tubes onto robust functional capsules should help in developing an artificial light‐harvesting system.  相似文献   

5.
Layers of the polyelectrolytes poly(allylamine hydrochloride) (PAH, polycationic) and poly(styrene sulfonate) (PSS, polyanionic) are consecutively adsorbed on flat silicon oxide surfaces, forming stable, ultrathin multilayer films. Subsequently, a final monolayer of the polycationic copolymer poly(L ‐lysine)‐graft‐poly(ethylene glycol) (PLL‐g‐PEG) is adsorbed onto the PSS‐terminated multilayer in order to impart protein resistance to the surface. The growth of each of the polyelectrolyte layers and the protein resistance of the resulting [PAH/PPS]n(PLL‐g‐PEG) multilayer (n = 1–4) are followed quantitatively ex situ using X‐ray photoelectron spectroscopy and in situ using real‐time optical‐waveguide lightmode spectroscopy. In a second approach, the same type of [PAH/PSS]n(PLL‐g‐PEG) multilayer coatings are successfully formed on the surface of colloidal particles in order to produce surface‐functionalized, hollow microcapsules after dissolution of the core materials (melamine formaldehyde (MF) and poly(lactic acid) (PLA; colloid diameters: 1.2–20 μm). Microelectrophoresis and confocal laser scanning microscopy are used to study multilayer formation on the colloids and protein resistance of the final capsule. The quality of the PLL‐g‐PEG layer on the microcapsules depends on both the type of core material and the dissolution protocols used. The greatest protein resistance is achieved using PLA cores and coating the polyelectrolyte microcapsules with PLL‐g‐PEG after dissolution of the cores. Protein adsorption from full serum on [PAH/PPS]n(PLL‐g‐PEG) multilayers (on both flat substrates and microcapsules) decreases by three orders of magnitude in comparison to the standard [PAH/PPS]n layer. Finally, biofunctional capsules of the type [PAH/PPS]n(PLL‐g‐PEG/PEG‐biotin) (top copolymer layer with a fraction of the PEG chains end‐functionalized with biotin) are produced which allow for specific recognition and immobilization of controlled amounts of streptavidin at the surface of the capsules. Biofunctional multilayer films and capsules are believed to have a potential for future applications as novel platforms for biotechnological applications such as biosensors and carriers for targeted drug delivery.  相似文献   

6.
A non‐water‐soluble natural antibacterial peptide, gramicidin A, has been successfully incorporated into polyelectrolyte assemblies to elaborate biocidal thin films. For this, we used a double strategy, the first step of which consists of complexing the peptide by a non‐denaturing anionic amphiphilic polysaccharide, namely a hydrophobically modified carboxymethylpullulan. We demonstrate that the use of this amphiphilic anionic derivative allows to efficiently solubilize the peptide in aqueous solution, without denaturation. The amount of peptide solubilized by the amphiphilic polysaccharide was optimized by systematically varying the hydrophobicity and the molar mass of the CMP derivative. In a second step, the negatively charged complex was layer‐by‐layer assembled with cationic poly(L‐lysine) to form biofunctionalized thin films. The amount of peptide incorporated in the multilayers was controlled by changing the number of deposited complex layers, and was quantified by UV spectroscopy. The antibacterial activity of the resulting biofunctionalized films was evidenced against a gram‐positive bacterium, E. faecalis. We demonstrated that the biocidal activity resulted from a double mechanism: contact between bacteria and the film surface, and release of the peptide into the solution surrounding the film. We also showed that the peptide was not completely removed from the film after rinsing, which insured preservation of the biocidal activity of the film surface.  相似文献   

7.
Poly(dimethylsiloxane) (PDMS) microbioreactors with computerized perfusion controls would be useful for engineering the bone marrow microenvironment. However, previous efforts to grow primary bone marrow cells on PDMS substrates have not been successful due to the weak attachment of cells to the PDMS surface even with adsorption of cell adhesive proteins such as collagen or fibronectin. In this work, modification of the surface of PDMS with biofunctional multilayer coatings is shown to promote marrow cell attachment and spreading. An automated microfluidic perfusion system is used to create multiple types of polyelectrolyte nanoscale coatings simultaneously in multiple channels based on layer‐by‐layer deposition of PDDA (poly(diallyldimethyl ammonium chloride)), clay, type IV collagen and fibronectin. Adherent primary bone marrow cells attached and spread best on a surface with composition of (PDDA/clay)5 (Collagen/Fibronectin)2 with negatively charged fibronectin exposed on the top, remaining well spread and proliferating for at least two weeks. Compared to traditional more macroscopic layer‐by‐layer methods, this microfluidic nanocomposite process has advantages of greater flow control, automatic processing, multiplexed fabrication, and use of lesser amounts of polymers and protein solutions.  相似文献   

8.
Layer‐by‐layer self‐assembled polyelectrolyte films containing a charged cyclodextrin and lipopolysaccharide (LPS) are developed for the first time as a potential model for local endotoxin antagonist delivery. We have examined the biological activity of a lipopolysaccharide from E. coli incorporated into multilayered architectures made of poly‐(L ‐lysine) and poly‐(L ‐glutamic acid). Used in such build‐ups, a polycationic cyclodextrin, heptakis(6‐deoxy‐6‐pyridylamino)‐β‐cyclodextrin showed molecular chaperone properties by enabling restoration of the LPS biological activity whenever lost upon interaction with poly‐(L ‐lysine).  相似文献   

9.
Polyelectrolyte multilayers (PEMs) are now widely used for biomedical applications. In this work, we investigated the primary osteoblast adhesion properties of PEMs of poly(L ‐lysine) (PLL), poly(L ‐glutamic acid) (PGA), poly(alginic acid) (Palg), and poly(galacturonic acid) (Pgal). In order to compensate for the poor adhesion of the as‐synthesized films, two kinds of film modifications were achieved: a purely physical modification by film crosslinking, and a chemical modification by grafting a arginine–glycine–aspartic acid (RGD) peptide to PGA. Crosslinking was performed using a water‐soluble carbodiimide in combination with N‐hydroxysulfosuccinimide (sulfo‐NHS) to induce amide formation. This reaction was followed by Fourier‐transform IR spectroscopy. For film functionalization, a 15‐amino‐acid peptide was grafted to PGA and deposited as the top layer of the film. PLL/PGA, PLL/Palg, and PLL/Pgal films were crosslinked or functionalized. The films were tested for both short‐term adhesion properties and long‐term proliferation of primary osteoblasts. Whereas the effect of film crosslinking on short‐term adhesion was moderate, it was much more important for the RGD‐functionalized films. On the other hand, the long‐term proliferation was the same or even higher for the crosslinked films as compared with the functionalized films. This effect was particularly enhanced for the PLL/Palg and PLL/Pgal films. Finally, we functionalized PLL/PGA that had been crosslinked prior to PGA‐RGD deposition. These architectures exhibited even higher short‐term adhesion and proliferation. These results clearly show the important role of the physical properties of the films, besides their chemical properties, for the modulation of primary cell‐adhesion behavior.  相似文献   

10.
Layer‐by‐layer (LbL) self‐assemblies have inherent potential as dynamic coatings because of the sensitivity of their building blocks to external stimuli. Here, humidity serves as a feasible trigger to activate the self‐healing of a microporous polyethylenimine/poly(acrylic acid) multilayer film. Microporous structures within the polyelectrolyte multilayer (PEM) film are created by acid treatment, followed by freeze‐drying to remove water. The self‐healing of these micropores can be triggered at 100% relative humidity, under which condition the mobility of the polyelectrolytes is activated. Based on this, a facile and versatile method is suggested for directly integrating hydrophobic drugs into PEM films for surface‐mediated drug delivery. The high porosity of microporous film enables the highest loading (≈303.5 μg cm?2 for a 15‐bilayered film) of triclosan to be a one‐shot process via wicking action and subsequent solvent removal, thus dramatically streamlining the processes and reducing complexities compared to the existing LbL strategies. The self‐healing of a drug‐loaded microporous PEM film significantly reduces the diffusion coefficient of triclosan, which is favorable for the long‐term sustained release of the drug. The dynamic properties of this polymeric coating provide great potential for its use as a delivery platform for hydrophobic drugs in a wide variety of biomedical applications.  相似文献   

11.
Beside chemical properties and topographical features, mechanical properties of gels have been recently demonstrated to play an important role in various cellular processes, including cell attachment, proliferation, and differentiation. In this work, we used multilayer films made of poly(L-lysine)/Hyaluronan (PLL/HA) of controlled stiffness to investigate the effects of mechanical properties of thin films on skeletal muscle cells (C2C12 cells) differentiation. Prior to differentiation, cells need to adhere and proliferate in growth medium. Stiff films (E(0) > 320 kPa) promoted formation of focal adhesions and organization of the cytoskeleton as well as an enhanced proliferation, whereas soft films were not favorable for cell anchoring, spreading or proliferation. Then C2C12 cells were switched to a low serum containing medium to induce cell differentiation, which was also greatly dependent on film stiffness. Although myogenin and troponin T expressions were only moderately affected by film stiffness, the morphology of the myotubes exhibited striking stiffness-dependent differences. Soft films allowed differentiation only for few days and the myotubes were very short and thick. Cell clumping followed by aggregates detachment could be observed after ~2 to 4 days. On stiffer films, significantly more elongated and thinner myotubes were observed for up to ~ 2 weeks. Myotube striation was also observed but only for the stiffer films. These results demonstrate that film stiffness modulates deeply adhesion, proliferation and differentiation, each of these processes having its own stiffness requirement.  相似文献   

12.
The first study of ion transport across self‐assembled multilayered films of p‐sulfonato‐calix[n]arenes and poly(vinyl amine) (PVA) is presented. The films are prepared by the alternate electrostatic layer‐by‐layer assembly of the anionic calixarenes and cationic PVA on porous polyacrylonitrile (PAN) supports. We use tetra‐p‐sulfonato‐calix[4]arene (calix4), hexa‐p‐sulfonato‐calix[6]arene (calix6), and octa‐p‐sulfonato‐calix[8]arene (calix8) as the calixarenes. Ultraviolet (UV) studies indicate that dipping solutions of pH 6.8, without a supporting electrolyte, are most suited for film preparation. Calix8 is adsorbed in higher concentrations per layer than calix6 or calix4, probably because desorption is less pronounced. The permeation rates, PRs, of monovalent alkali‐metal chlorides (Li, Na, K, Cs), magnesium chloride, divalent transition‐metal chlorides (Ni, Cu, Zn), trivalent lanthanide chlorides (La, Ce, Pr, Sm), and sodium sulfate across the calix4/PVA, calix6/PVA, and calix8/PVA membranes are studied and compared with the corresponding PR values across a poly(styrene sulfonate) (PSS)/PVA multilayer membrane prepared under the same conditions. The PR values of the alkali‐metal salts are between 4 and 17 × 10–6 cm s–1, those of magnesium chloride and the transition‐metal salts are 0.2–1.3 × 10–6 cm s–1, and those of the lanthanide salts are about 0.1 × 10–6 cm s–1. Possible origins for the large differences are discussed. Ion transport is first of all controlled by electrostatic effects such as Donnan rejection of di‐ and trivalent ions in the membrane, but metal‐ion complexation with the calixarene derivatives also plays a role. Complexation occurs especially between Li+ or Na+ and calix4, Mg2+, or Cu2+ and calix6, Cu2+, Zn2+, or the lanthanide ions and calix8. Divalent sulfate ions are found to replace the calixarene polyanions in the membrane. UV studies of the permeate solutions indicate that calix4 especially is displaced during sulfate permeation.  相似文献   

13.
A bilayer of a hydrophobically modified polyelectrolyte, octadecyl poly(acrylamide) (PAAm), sandwiched between the layers of a hydrophilic polyelectrolyte, poly(ethyleneimine) (PEI), is prepared by the sequential electrostatic–hydrophobic–electrostatic‐interaction‐driven self‐assembly on planar and colloid substrates. This process results in a PEI/[PAAm]2/PEI‐multilayer‐coated substrate. The removal of a PAA/PEI/[PAAm]2/PEI‐multilayer‐coated decomposable colloidal template produces hollow capsules. Irregular hydrophobic domains of the [PAAm]2 bilayer in the PEI/[PAAm]2/PEI‐multilayer capsule are infiltrated with a lipid to obtain a uniform, distinct hydrophobic layer, imparting the capsule with a pseudobilayer vesicle structure.  相似文献   

14.
This paper reports on microcapsules obtained by layer‐by‐layer deposition of bio‐polyelectrolyte multilayers at the surface of biodegradable dextran microgels. The behavior of the layer‐by‐layer coating upon degradation of the microgel core strongly depends on the bio‐polyelectrolytes used. Two types of microcapsules, “self‐rupturing” microcapsules and “hollow” microcapsules, are presented. Self‐rupturing microcapsules are obtained when the swelling pressure of the degrading microgel core is strong enough to rupture the surrounding bio‐polyelectrolyte membrane. Self‐rupturing microcapsules could be of interest as a pulsed drug delivery system. Hollow microcapsules are obtained after applying multiple layers of bio‐polyelectrolyte that can withstand the swelling pressure of the degrading microgel core. Biomacromolecules (such as albumin and dextran) spontaneously accumulate in the hollow microcapsules prepared from dex‐HEMA microgels, which could be of interest for drug‐encapsulation purposes.  相似文献   

15.
Creating actuators capable of mechanical motion in response to external stimuli is a key for design and preparation of smart materials. The lifetime of such materials is limited by their eventual wear. Here, self‐healable and adhesive actuating materials are demonstrated by taking advantage of the solvent responsive of weak polyelectrolyte multilayers consisting of branched poly(ethylenimine)/poly(acrylic acid) (BPEI/PAA). BPEI/PAA multilayers are dehydrated and contract upon contact with organic solvent and become sticky when wetted with water. By constructing an asymmetric heterostructure consisting of a responsive BPEI/PAA multilayer block and a nonresponsive component through either layer‐by‐layer assembly or the paste‐to‐curl process, smart films that actuate upon exposure to alcohol are realized. The curl degree, defined as degrees from horizontal that the actuated material reaches, can be as high as ≈228.9°. With evaporation of the ethanol, the curled film returns to its initial state, and water triggers fast self‐healing extends the actuator's lifetime. Meanwhile, the adhesive nature of the wet material allows it to be attached to various substrates for possible combination with hydrophobic functional surfaces and/or applications in biological environments. This self‐healable adhesive for controlled fast actuation represents a considerable advance in polyelectrolyte multilayers for design and fabrication of robust smart advanced materials.  相似文献   

16.
Robust ultrathin multilayer films of silk fibroin were fabricated by spin coating and spin‐assisted layer‐by‐layer assembly and their mechanical properties were studied both in tensile and compression modes for the first time. The ultrathin films were characterized by a high elastic modulus of 6–8 GPa (after treatment with methanol) with the ultimate tensile strength reaching 100 MPa. The superior toughness is also many times higher than that usually observed for conventional polymer composites (328 kJ m–3 for the silk material studied here versus typical values of < 100 kJ m–3). These outstanding properties are suggested to be caused by the gradual development of the self‐reinforcing microstructure of highly crystalline β‐sheets, serving as reinforcing fillers and physical crosslinks, a process that is well known for bulk silk materials but it is demonstrated here to occur in ultrathin films as well, despite their limited dimensions. However, the confined state within films thinner than the lengths of the extended domains causes a significantly reduced elasticity which should be considered in the design of nanosized films from silk materials. Such regenerated silk fibroin films with outstanding mechanical strength have potential applications in microscale biodevices, biocompatible implants, and synthetic coatings for artificial skin.  相似文献   

17.
All fuel cells utilizing the membrane‐electrode assembly have their ion‐conductive membrane sandwiched between bipolar plates. Unfortunately, applying conventional techniques to isolated polyelectrolyte membranes is challenging and difficult. A more practical alternative is to use the layer‐by‐layer assembly technique to fabricate a membrane‐electrode assembly that is technologically relatively simple, economic, and robust. The process presented here paves the way to fabricate ion‐conductive membranes tailored for optimum performance in terms of controlled thickness, structural morphology, and catalyst loading. Composite membranes are constructed through the layered assembly of ionically conductive multilayer thin films atop a porous polycarbonate membrane. Under ambient conditions, a fuel cell using a poly(ethylene oxide)/poly(acrylic acid) (PEO/PAA) composite membrane delivers a maximum power density of 16.5 mW cm–2 at a relative humidity of 55 %, which is close to that of some commercial fuel cells operating under the same conditions. Further optimization of these systems may lead to new, ultrathin, flexible fuel cells for portable power and micropower applications.  相似文献   

18.
A new type of thin‐film electrode that does not utilize conducting polymers or traditional metal or chemical vapor deposition methods has been developed to create ultrathin flexible electrodes for fuel cells. Using the layer‐by‐layer (LbL) technique, carbon–polymer electrodes have been assembled from polyelectrolytes and stable carbon colloidal dispersions. Thin‐film LbL polyelectrolyte–carbon electrodes (LPCEs) have been successfully assembled atop both metallic and non‐metallic, porous and non‐porous substrates. These electrodes exhibit high electronic conductivities of 2–4 S cm–1, and their porous structure provides ionic conductivities in the range of 10–4 to 10–3 S cm–1. The electrodes show remarkable stability towards oxidizing, acidic, or delaminating basic solutions. In particular, an LPCE consisting of poly(diallyldimethyl ammonium chloride)/poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid)/carbon–platinum assembled on a porous stainless steel support yields an open‐circuit potential similar to that of a pure platinum electrode. With LbL carbon–polymer electrodes, the membrane‐electrode assembly (MEA) in a fuel cell can be made several times thinner, assume multiple geometries, and hence be more compact. The mechanism for LPCE deposition, electrode structure, and miniaturization will be presented and discussed, and demonstrations of the LbL electrodes in a traditional Nafion‐based proton fuel cell and the first demonstration of a thin‐film hydrogen–air “soft” fuel cell fully constructed using multilayer assembly are described.  相似文献   

19.
Freestanding layer‐by‐layer (LbL) films encapsulating controlled volume fractions (? = 2.5–22.5 %) of silver nanowires are fabricated. The silver nanowires are sandwiched between poly(allylamine hydrochloride)/poly(styrene sulfonate) (PAH/PSS) films resulting in nanocomposite structures with a general formula of (PAH/PSS)10PAH Ag(PAH/PSS)10PAH. The Young's modulus, toughness, ultimate stress, and ultimate strain are evaluated for supported and freestanding structures. Since the diameter of the nanowires (73 nm) is larger than the thickness of the LbL films (total of about 50 nm), a peculiar morphology is observed with the silver nanowires protruding from the planar LbL films. Nanowire‐containing LbL films possess the ability to sustain significant elastic deformations with the ultimate strain reaching 1.8 %. The Young's modulus increases with increasing nanowire content, reaching about 6 GPa for the highest volume fraction, due to the filler reinforcement effect commonly observed in composite materials. The ultimate strengths of these composites range from 60–80 MPa and their toughness reaches 1000 kJ m–3 at intermediate nanowire content, which is comparable to LbL films reinforced with carbon nanotubes. These robust freestanding 2D arrays of silver nanowires with peculiar optical, mechanical, and conducting properties combined with excellent micromechanical stability could serve as active elements in microscopic acoustic, pressure, and photothermal sensors.  相似文献   

20.
Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single‐lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concentration. Here, a supramolecular assembly of a multilayered lipid membrane system is reported in which poly‐l ‐lysine electrostatically links negatively charged lipid membranes. When suitable membrane enzymes are incorporated, either an ubiquinol oxidase (cytochrome bo 3 from Escherichia coli) or an oxygen tolerant hydrogenase (the membrane‐bound hydrogenase from Ralstonia eutropha), cyclic voltammetry (CV) reveals a linear increase in biocatalytic activity with each additional membrane layer. Electron transfer between the enzymes and the electrode is mediated by the quinone pool that is present in the lipid phase. Using atomic force microscopy, CV, and fluorescence microscopy it is deduced that quinones are able to diffuse between the stacked lipid membrane layers via defect sites where the lipid membranes are interconnected. This assembly is akin to that of interconnected thylakoid membranes or the folded lamella of mitochondria and has significant potential for mimicry in biotechnology applications such as energy production or biosensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号