首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyelectrolyte multilayers (PEMs) are now widely used for biomedical applications. In this work, we investigated the primary osteoblast adhesion properties of PEMs of poly(L ‐lysine) (PLL), poly(L ‐glutamic acid) (PGA), poly(alginic acid) (Palg), and poly(galacturonic acid) (Pgal). In order to compensate for the poor adhesion of the as‐synthesized films, two kinds of film modifications were achieved: a purely physical modification by film crosslinking, and a chemical modification by grafting a arginine–glycine–aspartic acid (RGD) peptide to PGA. Crosslinking was performed using a water‐soluble carbodiimide in combination with N‐hydroxysulfosuccinimide (sulfo‐NHS) to induce amide formation. This reaction was followed by Fourier‐transform IR spectroscopy. For film functionalization, a 15‐amino‐acid peptide was grafted to PGA and deposited as the top layer of the film. PLL/PGA, PLL/Palg, and PLL/Pgal films were crosslinked or functionalized. The films were tested for both short‐term adhesion properties and long‐term proliferation of primary osteoblasts. Whereas the effect of film crosslinking on short‐term adhesion was moderate, it was much more important for the RGD‐functionalized films. On the other hand, the long‐term proliferation was the same or even higher for the crosslinked films as compared with the functionalized films. This effect was particularly enhanced for the PLL/Palg and PLL/Pgal films. Finally, we functionalized PLL/PGA that had been crosslinked prior to PGA‐RGD deposition. These architectures exhibited even higher short‐term adhesion and proliferation. These results clearly show the important role of the physical properties of the films, besides their chemical properties, for the modulation of primary cell‐adhesion behavior.  相似文献   

2.
This article demonstrates the tuning of the biological activity of a surface functionalized by a polyelectrolyte multilayer. The interaction of protein A with macrophages is used as the model system. The film consists of two polypeptides, poly(lysine) and poly(glutamic acid); each “build‐up” solution is a mixture of the respective D ‐ and L ‐enantiomers (d and l enantiomers). Cells are deposited on top of the film, and they produce tumor necrosis factor alpha (TNF‐α) as they come into contact with the protein. Depending upon the d/l‐enantiomer ratio of the polyelectrolyte solutions used for the film build‐up, and the embedding depth of the protein, the production of TNF‐α commences after a varying induction time and displays a transition from no‐production to full‐production, which takes place over a period of time that depends on the film's composition and embedding depth. Thus, it is shown that by changing these two parameters the timing of the protein's activity can be accurately tuned.  相似文献   

3.
Using siRNA therapeutics to treat hematologic malignancies has been unsuccessful because blood cancer cells exhibit remarkable resistance to standard transfection methods. Herein, the successful delivery of siRNA therapeutics with a dual‐targeted, layer‐by‐layer nanoparticle (LbL‐NP) is reported. The LbL‐NP protects siRNA from nucleases in the bloodstream by embedding it within polyelectrolyte layers that coat a polymeric core. The outermost layer consists of hyaluronic acid (a CD44‐ligand) covalently conjugated to CD20 antibodies. The CD20/CD44 dual‐targeting outer layer provides precise binding to blood cancer cells, followed by receptor‐mediated endocytosis of the LbL‐NP. This siRNA delivery platform is used to silence B‐cell lymphoma 2 (BCL‐2), a pro‐survival protein, in vitro and in vivo. The dual‐targeting approach significantly enhances internalization of BCL‐2 siRNA in lymphoma and leukemia cells, which leads to significant downregulation of BCL‐2 expression. Systemic administration of the dual‐targeted, siRNA‐loaded nanoparticle induces apoptosis and hampers proliferation of blood cancer cells, both in cell culture and in orthotopic non‐Hodgkin's lymphoma animal models. These results provide the basis for approaches to targeting blood‐borne cancers and other diseases and suggest that LbL nanoassemblies are a promising approach for delivering therapeutic siRNA to hematopoetic cell types that are known to evade transfection by other means.  相似文献   

4.
Axons of the adult central nervous system exhibit an extremely limited ability to regenerate after spinal cord injury. Experimentally generated patterns of axon growth are typically disorganized and randomly oriented. Support of linear axonal growth into spinal cord lesion sites has been demonstrated using arrays of uniaxial channels, templated with agarose hydrogel, and containing genetically engineered cells that secrete brain‐derived neurotrophic factor (BDNF). However, immobilizing neurotrophic factors secreting cells within a scaffold is relatively cumbersome, and alternative strategies are needed to provide sustained release of BDNF from templated agarose scaffolds. Existing methods of loading the drug or protein into hydrogels cannot provide sustained release from templated agarose hydrogels. Alternatively, here it is shown that pH‐responsive H‐bonded poly(ethylene glycol)(PEG)/poly(acrylic acid)(PAA)/protein hybrid layer‐by‐layer (LbL) thin films, when prepared over agarose, provided sustained release of protein under physiological conditions for more than four weeks. Lysozyme, a protein similar in size and isoelectric point to BDNF, is released from the multilayers on the agarose and is biologically active during the earlier time points, with decreasing activity at later time points. This is the first demonstration of month‐long sustained protein release from an agarose hydrogel, whereby the drug/protein is loaded separately from the agarose hydrogel fabrication process.  相似文献   

5.
Poly(dimethylsiloxane) (PDMS) microbioreactors with computerized perfusion controls would be useful for engineering the bone marrow microenvironment. However, previous efforts to grow primary bone marrow cells on PDMS substrates have not been successful due to the weak attachment of cells to the PDMS surface even with adsorption of cell adhesive proteins such as collagen or fibronectin. In this work, modification of the surface of PDMS with biofunctional multilayer coatings is shown to promote marrow cell attachment and spreading. An automated microfluidic perfusion system is used to create multiple types of polyelectrolyte nanoscale coatings simultaneously in multiple channels based on layer‐by‐layer deposition of PDDA (poly(diallyldimethyl ammonium chloride)), clay, type IV collagen and fibronectin. Adherent primary bone marrow cells attached and spread best on a surface with composition of (PDDA/clay)5 (Collagen/Fibronectin)2 with negatively charged fibronectin exposed on the top, remaining well spread and proliferating for at least two weeks. Compared to traditional more macroscopic layer‐by‐layer methods, this microfluidic nanocomposite process has advantages of greater flow control, automatic processing, multiplexed fabrication, and use of lesser amounts of polymers and protein solutions.  相似文献   

6.
The layer‐by‐layer (LbL) desposition of oppositely charged polyelectrolytes from adsorption solutions of different ionic strength onto ~7 nm diameter carboxylic acid‐derivatized gold nanoparticles has been studied. The polyelectrolyte‐modified nanoparticles were characterized by UV‐vis spectrophotometry, microelectrophoresis, analytical ultracentrifugation, and transmission electron microscopy. UV‐vis data showed that the peak plasmon absorption wavelength of the gold nanoparticles red‐shifted after each adsorption step, and microelectrophoresis experiments revealed a reversal in the surface charge of the nanoparticles following deposition of each layer. These data are consistent with the formation of polyelectrolyte layers on the nanoparticles. Analytical ultracentrifugation showed an increase in mean nanoparticle diameter on adsorption of the polyelectrolytes, confirming the formation of gold‐core/polyelectrolyte‐shell nanoparticles. Transmission electron microscopy studies showed no signs of aggregation of the polyelectrolyte‐coated nanoparticles. The adsorption of the polyelectrolyte‐coated gold nanoparticles onto oppositely charged planar supports has also been examined. UV‐vis spectrophotometry and atomic force microscopy showed increased amounts of nanoparticles were adsorbed with increasing ionic strength of the nanoparticle dispersions. This allows control of the nanoparticle surface loading by varying the salt content in the nanoparticle dispersions used for adsorption. The LbL strategy used in this work is expected to be applicable to other nanoparticles (e.g., semiconductors, phosphors), thus providing a facile means for their controlled surface modification through polyelectrolyte nanolayering. Such nanoparticles are envisaged to have applications in the biomedical and bioanalytical fields, and to be useful building blocks for the creation of advanced nanoparticle‐based films.  相似文献   

7.
Layers of the polyelectrolytes poly(allylamine hydrochloride) (PAH, polycationic) and poly(styrene sulfonate) (PSS, polyanionic) are consecutively adsorbed on flat silicon oxide surfaces, forming stable, ultrathin multilayer films. Subsequently, a final monolayer of the polycationic copolymer poly(L ‐lysine)‐graft‐poly(ethylene glycol) (PLL‐g‐PEG) is adsorbed onto the PSS‐terminated multilayer in order to impart protein resistance to the surface. The growth of each of the polyelectrolyte layers and the protein resistance of the resulting [PAH/PPS]n(PLL‐g‐PEG) multilayer (n = 1–4) are followed quantitatively ex situ using X‐ray photoelectron spectroscopy and in situ using real‐time optical‐waveguide lightmode spectroscopy. In a second approach, the same type of [PAH/PSS]n(PLL‐g‐PEG) multilayer coatings are successfully formed on the surface of colloidal particles in order to produce surface‐functionalized, hollow microcapsules after dissolution of the core materials (melamine formaldehyde (MF) and poly(lactic acid) (PLA; colloid diameters: 1.2–20 μm). Microelectrophoresis and confocal laser scanning microscopy are used to study multilayer formation on the colloids and protein resistance of the final capsule. The quality of the PLL‐g‐PEG layer on the microcapsules depends on both the type of core material and the dissolution protocols used. The greatest protein resistance is achieved using PLA cores and coating the polyelectrolyte microcapsules with PLL‐g‐PEG after dissolution of the cores. Protein adsorption from full serum on [PAH/PPS]n(PLL‐g‐PEG) multilayers (on both flat substrates and microcapsules) decreases by three orders of magnitude in comparison to the standard [PAH/PPS]n layer. Finally, biofunctional capsules of the type [PAH/PPS]n(PLL‐g‐PEG/PEG‐biotin) (top copolymer layer with a fraction of the PEG chains end‐functionalized with biotin) are produced which allow for specific recognition and immobilization of controlled amounts of streptavidin at the surface of the capsules. Biofunctional multilayer films and capsules are believed to have a potential for future applications as novel platforms for biotechnological applications such as biosensors and carriers for targeted drug delivery.  相似文献   

8.
Nanostructured titania‐polyelectrolyte composite and pure anatase and rutile titania tubes were successfully prepared by layer‐by‐layer (LbL) deposition of a water‐soluble titania precursor, titanium(IV ) bis(ammonium lactato) dihydroxide (TALH) and the oppositely charged poly(ethylenimine) (PEI) to form multilayer films. The tube structure was produced by depositing inside the cylindrical pores of a polycarbonate (PC) membrane template, followed by calcination at various temperatures. The morphology, structure and crystal phase of the titania tubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and UV‐vis absorbance measurements. The as‐prepared anatase titania tubes exhibit very promising photocatalytic properties, demonstrated by the degradation of the azodye methyl orange (MO) as a model molecule. They are also easily separated from the reaction system by simple filtration or centrifugation, allowing for straightforward recycling. The reported strategy provides a simple and versatile technique to fabricate titania based tubular nanostructures, which could easily be extended to prepare tubular structures of other materials and may find application in catalysis, chemical sensing, and nanodevices.  相似文献   

9.
Hydrogen‐bonding interactions are an important alternative to electrostatic interactions for assembling multilayer thin films of uncharged components. Herein, a new method is reported for rendering such films stable at pH values close to physiological conditions. Multilayer films based on hydrogen bonding are assembled by the alternate deposition of poly[(styrene sulfonic acid)‐co‐(maleic acid)] (PSSMA) and poly(N‐isopropylacrylamide) (PNiPAAm) at pH 2.5. The use of PSSMA results in multilayers that contain free styrene sulfonate groups, as these moieties do not interact with the PNiPAAm functional groups. Subsequent infiltration of a multivalent ion (Ce4+ or Fe3+) leads to an increase in the total film mass, with little impact on the film morphology, as determined by using atomic force microscopy. To examine the film stability, the resulting films have been exposed to elevated pH (7.1). While there is substantial swelling of the multilayers (25 % and 55 % for Ce4+‐ and Fe3+‐stabilized films, respectively), film loss is negligible. This provides a stark contrast with non‐stabilized films, which disassemble almost immediately upon exposure to pH 7.1. This method represents a simple and effective strategy for stabilizing hydrogen‐bonded structures non‐covalently. Further, the multivalent ions also render the films responsive to changes in the local redox environment, as demonstrated by film disassembly after exposure of Fe3+‐treated films to iodide solutions.  相似文献   

10.
Multilayer thin films of ~ 7 nm diameter gold nanoparticles (GNPs) linked with horse heart myoglobin (Mb) are fabricated, for the first time, by layer‐by‐layer (LbL) assembly on glass slides, and silicon and plastic substrates. The GNP/Mb nanocomposite films show sharp surface plasmon resonance (SPR) absorption bands that are used to follow the LbL growth of the film and to determine the kinetics of GNP adsorption on the Mb‐modified surface. The GNP/Mb nanocomposite films are characterized using atomic force microscopy, transmission electron microscopy, polarized UV‐vis spectroscopy, and spectroscopic ellipsometry. The GNPs in the multilayer films are spatially separated from one another, and interparticle interactions remain in the film, making it optically anisotropic. The GNP/Mb nanocomposite films are stable in air at temperatures up to 100 °C, and can withstand successive immersions in strongly acidic and basic solutions. The SPR absorption band of the GNP/Mb nanocomposite film in air exhibits a red‐shift in the wavelength maximum and an increase in the maximum absorbance relative to that in water. This result, which is in contrast to that observed with a GNP monolayer on an aminosilane‐functionalized substrate, suggests the shrinkage in air and swelling in water of Mb molecules embedded in the nanocomposite film.  相似文献   

11.
Superparamagnetic hybrid nanoparticles (ca. 80 nm) are obtained. They consist of an inner iron oxide core coated by a silica shell, which is in turn functionalized with amine or carboxyl groups and covalently coupled to a monoclonal antibody (anti‐hCG; hCG = human chorionic gonadotropin). The prepared nanoparticles show a specific magnetic moment (per gram of iron) that is comparable to that measured for commercial superparamagnetic iron oxide preparations. The bioactivity of the antibody‐conjugated magnetic nanoparticles is verified by a standard bioassay. These results indicate the potential of the hybrid nanoparticles prepared for use as enhanced contrast agents in magnetic resonance imaging applications.  相似文献   

12.
The first study of ion transport across self‐assembled multilayered films of p‐sulfonato‐calix[n]arenes and poly(vinyl amine) (PVA) is presented. The films are prepared by the alternate electrostatic layer‐by‐layer assembly of the anionic calixarenes and cationic PVA on porous polyacrylonitrile (PAN) supports. We use tetra‐p‐sulfonato‐calix[4]arene (calix4), hexa‐p‐sulfonato‐calix[6]arene (calix6), and octa‐p‐sulfonato‐calix[8]arene (calix8) as the calixarenes. Ultraviolet (UV) studies indicate that dipping solutions of pH 6.8, without a supporting electrolyte, are most suited for film preparation. Calix8 is adsorbed in higher concentrations per layer than calix6 or calix4, probably because desorption is less pronounced. The permeation rates, PRs, of monovalent alkali‐metal chlorides (Li, Na, K, Cs), magnesium chloride, divalent transition‐metal chlorides (Ni, Cu, Zn), trivalent lanthanide chlorides (La, Ce, Pr, Sm), and sodium sulfate across the calix4/PVA, calix6/PVA, and calix8/PVA membranes are studied and compared with the corresponding PR values across a poly(styrene sulfonate) (PSS)/PVA multilayer membrane prepared under the same conditions. The PR values of the alkali‐metal salts are between 4 and 17 × 10–6 cm s–1, those of magnesium chloride and the transition‐metal salts are 0.2–1.3 × 10–6 cm s–1, and those of the lanthanide salts are about 0.1 × 10–6 cm s–1. Possible origins for the large differences are discussed. Ion transport is first of all controlled by electrostatic effects such as Donnan rejection of di‐ and trivalent ions in the membrane, but metal‐ion complexation with the calixarene derivatives also plays a role. Complexation occurs especially between Li+ or Na+ and calix4, Mg2+, or Cu2+ and calix6, Cu2+, Zn2+, or the lanthanide ions and calix8. Divalent sulfate ions are found to replace the calixarene polyanions in the membrane. UV studies of the permeate solutions indicate that calix4 especially is displaced during sulfate permeation.  相似文献   

13.
Layer‐by‐layer self‐assembled polyelectrolyte films containing a charged cyclodextrin and lipopolysaccharide (LPS) are developed for the first time as a potential model for local endotoxin antagonist delivery. We have examined the biological activity of a lipopolysaccharide from E. coli incorporated into multilayered architectures made of poly‐(L ‐lysine) and poly‐(L ‐glutamic acid). Used in such build‐ups, a polycationic cyclodextrin, heptakis(6‐deoxy‐6‐pyridylamino)‐β‐cyclodextrin showed molecular chaperone properties by enabling restoration of the LPS biological activity whenever lost upon interaction with poly‐(L ‐lysine).  相似文献   

14.
A bilayer of a hydrophobically modified polyelectrolyte, octadecyl poly(acrylamide) (PAAm), sandwiched between the layers of a hydrophilic polyelectrolyte, poly(ethyleneimine) (PEI), is prepared by the sequential electrostatic–hydrophobic–electrostatic‐interaction‐driven self‐assembly on planar and colloid substrates. This process results in a PEI/[PAAm]2/PEI‐multilayer‐coated substrate. The removal of a PAA/PEI/[PAAm]2/PEI‐multilayer‐coated decomposable colloidal template produces hollow capsules. Irregular hydrophobic domains of the [PAAm]2 bilayer in the PEI/[PAAm]2/PEI‐multilayer capsule are infiltrated with a lipid to obtain a uniform, distinct hydrophobic layer, imparting the capsule with a pseudobilayer vesicle structure.  相似文献   

15.
Hybrid thin films of conjugated polymers and CdSe nanoparticles have been fabricated by using a layer‐by‐layer (LbL) approach driven by covalent coupling reactions. This method permits facile covalent crosslinking of the polymer/nanoparticle interlayers in common organic solvents, which provides a general route for preparing robust and uniform functional thin films. The deposition process is linearly related to the number of bilayers as monitored by UV‐vis absorption spectroscopy and ellipsometry. Characterization of the multilayer structures has been carried out by fluorescence spectroscopy, X‐ray photoelectron spectroscopy (XPS), and grazing‐angle Fourier‐transform infrared spectroscopy (FTIR). Techniques such as atomic force microscopy (AFM) and scanning electron microscopy (SEM) have also been used. A preliminary application of the hybrid films in the development of organic photovoltaics is presented. Upon illumination with white light at 10 mW cm–2, the self‐assembled multilayer films exhibit steady photocurrent responses with an overall optical‐to‐electrical power conversion efficiency of 0.71 %.  相似文献   

16.
All fuel cells utilizing the membrane‐electrode assembly have their ion‐conductive membrane sandwiched between bipolar plates. Unfortunately, applying conventional techniques to isolated polyelectrolyte membranes is challenging and difficult. A more practical alternative is to use the layer‐by‐layer assembly technique to fabricate a membrane‐electrode assembly that is technologically relatively simple, economic, and robust. The process presented here paves the way to fabricate ion‐conductive membranes tailored for optimum performance in terms of controlled thickness, structural morphology, and catalyst loading. Composite membranes are constructed through the layered assembly of ionically conductive multilayer thin films atop a porous polycarbonate membrane. Under ambient conditions, a fuel cell using a poly(ethylene oxide)/poly(acrylic acid) (PEO/PAA) composite membrane delivers a maximum power density of 16.5 mW cm–2 at a relative humidity of 55 %, which is close to that of some commercial fuel cells operating under the same conditions. Further optimization of these systems may lead to new, ultrathin, flexible fuel cells for portable power and micropower applications.  相似文献   

17.
A facile method of connecting fluorescent meso‐tetrakis(4‐sulfonatophenyl)porphine tetranion nanotubes to polyelectrolyte capsules is developed. Heat‐sensitive robust polyelectrolyte capsules consisting of poly(diallyldimethylammonium chloride) and poly(styrene sulfonate) multilayers have been fabricated using the conventional layer‐by‐layer technique. Supramolecular aggregation of porphyrin monomers to nanotubes is induced in the microenvironment of the capsules by sequential addition of salt and acid. Scanning electron microscopy, transmission electron microscopy, and atomic force microscopy images reveal satellite‐like structures consisting of a central capsule core with porphyrin nanotubes emerging radially from the capsule walls. The growth and the distribution of the porphyrin units have been monitored by UV‐vis spectroscopy, fluorescence spectroscopy, and confocal laser scanning microscopy. Changing the temperature alters the dimensions and the arrangement of the nanotubes on the capsule walls. Such an attachment of porphyrin tubes onto robust functional capsules should help in developing an artificial light‐harvesting system.  相似文献   

18.
A straightforward method to synthesize quasi‐monodisperse gold microspheres from a commercial gold plating solution is reported. The size and the surface roughness of the obtained particles can easily be tuned. In particular, raspberry‐like particles with a high active surface area are obtained. The microspheres are assembled on indium tin oxide (ITO) electrodes using the layer‐by‐layer technique and the overall electroactive surface area is increased, as characterized by cyclic voltammetry. The as‐prepared products were characterized by scanning electron microscopy (SEM), powder X‐ray diffraction (XRD), cyclic voltammetry, and light microscopy.  相似文献   

19.
A novel nanoparticle label capable of amplifying the electrochemical signal of DNA hybridization is fabricated by functionalizing poly(styrene‐co‐acrylic acid) microbeads with CdTe quantum dots. CdTe‐tagged polybeads are prepared by a layer‐by‐layer self‐assembly of the CdTe quantum dots (diameter = 3.07 nm) and polyelectrolyte on the polybeads (diameter = 323 nm). The self‐assembly procedure is characterized using scanning and transmission electron microscopy, and X‐ray photoelectron, infrared and photoluminescence spectroscopy. The mean quantum‐dot coverage is (9.54 ± 1.2) × 103 per polybead. The enormous coverage and the unique properties of the quantum dots make the polybeads an effective candidate as a functionalized amplification platform for labelling of DNA or protein. Herein, as an example, the CdTe‐tagged polybeads are attached to DNA probes specific to breast cancer by streptavidin–biotin binding to construct a DNA biosensor. The detection of the DNA hybridization process is achieved by the square‐wave voltammetry of Cd2+ after the dissolution of the CdTe tags with HNO3. The efficient carrier‐bead amplification platform, coupled with the highly sensitive stripping voltammetric measurement, gives rise to a detection limit of 0.52 fmol L?1 and a dynamic range spanning 5 orders of magnitude. This proposed nanoparticle label is promising, exhibits an efficient amplification performance, and opens new opportunities for ultrasensitive detection of other biorecognition events.  相似文献   

20.
Stable, ultrathin micropatterns containing CdS nanoparticles (CdS‐NPs) were fabricated in a two‐step process. In the first step, a precursor film was built‐up by the layer‐by‐layer electrostatic self‐assembly of photosensitive nitro‐diazoresin and mercaptoacetic acid capped CdS nanoparticles. In the second step, the film was selectively exposed to UV light through a photomask and developed in an aqueous solution of sodium dodecylsulfate (SDS). The formation of covalently linked micropatterns was based on the different solubilities of the irradiated and non‐irradiated parts of the film in the developer. Namely, the irradiated regions were cross‐linked and insoluble, whereas the non‐irradiated regions, linked with ionic bonds, were removed by the SDS solution. The resultant patterns were systematically characterized with atomic force microscopy, field emission scanning electron microscopy, optical microscopy, and X‐ray photoelectron spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号