首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In this work, nanocomposites with simultaneous dispersion of multiwalled carbon nanotubes (MWCNT) and montmorillonite clays in an epoxy matrix were prepared by in situ polymerization. A high energy sonication was employed as the dispersion method, without the aid of solvents in the process. The simultaneous dispersion of clays with carbon nanotubes (CNT) in different polymeric matrices has shown a synergic potential of increasing mechanical properties and electrical conductivity. Two different montmorillonite clays were used: a natural (MMT‐Na+) and an organoclay (MMT‐30B). The nanocomposites had their electrical conductivity (σ) and dielectric constant (εr) measured by impedance spectroscopy. The sharp increase in electrical conductivity was found between 0.10 and 0.25 wt% of the MWCNTs. Transmission electron microscopy (TEM) of the samples showed a lower tendency of MWCNT segregation on the MMT‐30B clay surface, which is connected to intercalation/exfoliation in the matrix, that generates less free volume available for MWCNTs in the epoxy matrix. Data from electrical measurement showed that simultaneously adding organoclay reduces the electrical conduction in the nanocomposite. Moreover, conductivity and permittivity dispersion in low frequency suggest agglomeration of nanotubes surrounding the natural clay (MMT‐Na+) particles, which is confirmed by TEM. POLYM. COMPOS., 37:1603–1611, 2016. © 2014 Society of Plastics Engineers  相似文献   

2.
Three different loading of 3‐aminopropyltriethoxysilane (APS) was used to modify the Na‐montmorillonite via cation exchange technique. The Na‐MMT and silane‐treated montmorillonite (STMMT) were melt‐compounded with polycarbonate (PC) by using Haake Minilab machine. The PC nanocomposite samples were prepared by using Haake Minijet injection molding technique. The intercalation and exfoliation of the PC/MMT nanocomposites were characterized by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal properties of the PC nanocomposites were investigated by using dynamic mechanical analyzer and thermogravimetry analyzer. XRD and TEM results revealed partial intercalation and exfoliation of STMMT in PC matrix. Increase of APS concentration significantly enhanced the storage modulus (E′) and improved the thermal stability of PC nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
In this article, the effect of four different clay surface modifiers on the structure of epoxy‐clay nanocomposites was studied. Various organoclays were prepared via cation exchange reaction between inorganic cations naturally occuring in the clay gallery and different alkylammonium ions. Epoxy‐clay nanocomposites were prepared by in situ intercalative polymerization using a hardener of polyoxypropylenediamine type. It was found that various clay surface modifiers exhibit different catalytic effect on curing of epoxy inside the clay gallery as observed by measuring of the gel time with dynamic mechanical analysis. This was confirmed by monitoring the change in the d‐spacing by wide angle X‐ray scattering performed in situ during curing. Morphology of the cured systems was probed by transmission electron microscopy (TEM) and wide angle X‐ray scattering (WAXS). The degree of dispersion observed by TEM and WAXS corresponds with achieved mechanical properties of cured composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Double‐modified montmorillonite (MMT) was first prepared by covalent modification of MMT with 3‐aminopropyltriethoxysilane and then intercalation modification by tributyl tetradecyl phosphonium ions. The obtained double‐modified MMT was melt compounded with polypropylene (PP) to obtain nanocomposites. The dispersion of the double‐modified MMT in PP was found to be greatly improved by the addition of PP‐graft‐maleic anhydride (PP‐g‐MA) as a “compatibilizer,” whose anhydride groups can react with the amino groups on the surface of the double‐modified MMT platelets and thus improve the dispersion of MMT in PP. Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis, scanning electron microscopy, and tensile test were used to characterize the structure of the double‐modified MMT, morphology, and the thermal and mechanical properties of the nanocomposites. The results show that PP‐g‐MA promotes the formation of exfoliated/intercalated morphology and obviously increases the thermal properties, tensile strength, and Young's modulus of the PP/double‐modified MMT nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
The investigation of clay based polymer nanocomposites has opened the door for the development of novel, ecofriendly advanced nano materials that can be safely recycled. Because of their nanometer size dispersion, these nanocomposites often have superior physical and mechanical properties. In this study, novel nanocomposites of poly(o‐toluidine) (POT) and organically modified montmorillonite (MMT) were synthesized using camphor sulfonic acid (CSA), cetyl pyridinum chloride (CPCl), and N‐cetyl‐N,N,N‐trimethyl ammonium bromide (CTAB) to study the role of surfactant modification on the intercalation. The in situ intercalative polymerization of POT within the organically modified MMT layers was analyzed by FTIR, UV–visible, XRD, SEM as well as TEM studies. The average particle size of the nanocomposites was found to be in the range 80–100 nm. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

6.
Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by a new one‐pot technique, where the hydrophilic Na‐MMT layers were decorated with hydrophobic 1‐dodecyl‐3‐methylimidazolium hexafluorophosphate (C12mimPF6) ionic liquid in situ during melt blending with PMMA and intercalation of polymer chains took place subsequently. The in situ modification and intercalation of Na‐MMT were confirmed using X‐ray diffraction and transmission electron microscopy. The combination of the compatible C12mimPF6 with PMMA and the good dispersion of MMT layers at the nanoscale rendered the resultant PMMA/MMT nanocomposites with improved optical transparency, thermal stability and mechanical properties. Copyright © 2012 Society of Chemical Industry  相似文献   

7.
The effect of clay modification on organo‐montmorillonite/NBR nanocomposites has been studied. Organo‐montmorillonite/NBR nanocomposites were prepared through a melt intercalation process. NBR nanocomposites were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), dynamic mechanical thermal analysis (DMTA) and a universal testing machine (UTM). XRD showed that the basal spacing in the clay increased, which means that the NBR matrix was intercalated in the clay layer galleries. On TEM images, organo‐montmorillonite (MMT) particles were clearly observed, having been exfoliated into nanoscale layers of about 10–20 nm thickness from their original 40 µm particle size. These layers were uniformly dispersed in the NBR matrix. The DMTA test showed that for these nanocomposites the plateau modulus and glass transition temperature (Tg) increased with respect to the corresponding values of pure NBR (without clay). UTM test showed that the nanocomposites had superior mechanical properties, ie strength and modulus. These improved properties are due to the nanoscale effects and strong interactions between the NBR matrix and the clay interface. Copyright © 2003 Society of Chemical Industry  相似文献   

8.
Acrylonitrile–butadiene–styrene (ABS)–clay composite and intercalated nanocomposites were prepared by melt processing, using Na‐montmorillonite (MMT), several chemically different organically modified MMT (OMMT) and Na‐laponite clays. The polymer–clay hybrids were characterized by WAXD, TEM, DSC, TGA, tensile, and impact tests. Intercalated nanocomposites are formed with organoclays, a composite is obtained with unmodified MMT, and the nanocomposite based on synthetic laponite is almost exfoliated. An unintercalated nanocomposite is formed by one of the organically modified clays, with similar overall stack dispersion as compared to the intercalated nanocomposites. Tg of ABS is unaffected by incorporation of the silicate filler in its matrix upto 4 wt % loading for different aspect ratios and organic modifications. A significant improvement in the onset of thermal decomposition (40–44°C at 4 wt % organoclay) is seen. The Young's modulus shows improvement, the elongation‐at‐break shows reduction, and the tensile strength shows improvement. Notched and unnotched impact strength of the intercalated MMT nanocomposites is lower as compared to that of ABS matrix. However, laponite and overexchanged organomontmorillonite clay lead to improvement in ductility. For the MMT clays, the Young's modulus (E) correlates with the intercalation change in organoclay interlayer separation (Δd001) as influenced by the chemistry of the modifier. Although ABS‐laponite composites are exfoliated, the intercalated OMMT‐based nanocomposites show greater improvement in modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
2,7‐Bis(4‐aminophenoxy) naphthalene (BAPN), a naphthalene‐containing diamine, was synthesized and polymerized with a 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) to obtain a polyimide (PI) via thermal imidization. To enhance the thermal and mechanical properties of the polymer, PI–Montmorillonite (MMT) nanocomposites were prepared from a DMAc solution of poly(amic acid) and a DMAc dispersion of MMT, which were organo‐modified with various amounts of n‐dodecylamine (DOA) or cetylpyridium chloride (CPC). FTIR, XRD, and TEM (transmission electron microscopy) were used to verify the incorporation of the modifying agents into the clay structure and the intercalation of the organoclay into the PI matrix. Results demonstrated that the introduction of a small amount of MMT (up to 5%) led to the improvement in thermal stability and mechanical properties of PI. The decomposition temperature of 5% weight loss (Td,5%) in N2 was increased by 46 and 36°C in comparison with pristine PI for the organoclay content of 5% with DOA and CPC, respectively. The nanocomposites were simultaneously strengthened and toughened. The dielectric constant, CTE, and water absorption were decreased. However, at higher organoclay contents (5–10%), these properties were reduced because the organoclay was poorly dispersed and resulted in aggregate formation. The effects of different organo‐modifiers on the properties of PI–MMT nanocomposite were also studied; the results showed that DOA was comparable with CPC. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

10.
Poly(methylmethacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization. MMT was previously organically modified by different modification agents [dioctadecyl dimethyl ammonium chloride (DODAC) and methacrylatoethyltrimethyl ammonium chloride (MTC)] and different modification method (cation‐exchange reaction and grafting reaction), ultimately giving rise to five kinds of organomodified MMT (OMMT). The structure of the OMMT was studied by Wide angle X‐ray diffraction (WAXD) and Fourier transform infrared spectroscopy (FTIR). Meanwhile, the structure of the PMMA/MMT nanocomposites microspheres was also investigated by WAXD. The molecular weight of the polymers extracted from PMMA/MMT nanocomposites was measured by gel permeation chromatograph (GPC). Finally, the mechanical properties of these PMMA/MMT nanocomposites were studied in detail. It was found that large interlayer spacing (d001) of OMMT could not entirely ensure an exfoliated structure of resultant PMMA/MMT nanocomposites, while OMMT with relative small d001 could still yield exfoliated structure as long as the compatibility between OMMT and polymer matrix was favorable. In addition, the results of mechanical investigation indicated that the compatibility between OMMT and PMMA matrix turned out to be the dominant factor deciding the final mechanical properties of PMMA/MMT nanocomposites. POLYM. COMPOS., 37:1705–1714, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
The polymer nanocomposite (PNC) films consisted of poly(ethylene oxide) (PEO) and sodium cations montmorillonite (MMT) clay were prepared by aqueous solution casting and direct melt press compounding techniques, whereas the films of PEO with trimethyl octadecyl ammonium cations organo‐modified montmorillonite (OMMT) clay were formed by melt pressed technique. The clay concentrations in the nanocomposites used are 1, 2, 3, 5, 10, and 20 wt % of the PEO weight. The X‐ray diffraction patterns of these nanocomposites were measured in the angular range (2θ) of 3.8–30°. The values of basal spacing d001 of MMT/OMMT, clay gallery width Wcg, d‐spacings of PEO crystal reflections d120 and d112, and their corresponding crystallite size L, and the peaks intensity I (counts) were determined for these nanocomposites. Results reveal that the nanocomposites have intercalated clay structures and the amount of intercalation increases with the increase of clay concentration. As compared to melt pressed PEO–MMT nanocomposites, the amount of clay intercalation is higher in aqueous solution cast nanocomposites. At 20 wt % MMT dispersion in PEO matrix, the solution cast PEO–MMT nanocomposite almost changes into amorphous phase. The melt press compounded PEO–OMMT films show more intercalation as compared to the PEO–MMT nanocomposites prepared by same technique. In melt pressed nanocomposites, the PEO crystalline phase significantly reduces when clay concentration exceeds 3 wt %, which is evidenced by the decrease in relative intensity of PEO principal crystalline peaks. The effect of interactions between the functional group (ethylene oxide) of PEO and layered sheets of clay on both the main crystalline peaks of PEO was separately analyzed using their XRD parameters in relation to structural conformations of these nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39898.  相似文献   

12.
Ethylene‐vinyl acetate copolymer (EVA)/montmorillonite (MMT) clay nanocomposites with varying degree of intercalation and exfoliation have been prepared using direct melt blending techniques with various degrees of polarity (9, 18, and 28 wt% vinyl acetate [VA]) and two different types of clay modification. Morphological characterization using wide‐angle X‐ray scattering (WAXS) and transmission electron microscopy (TEM) have indicated/confirmed the presence of intercalation and/or a combination of intercalation and exfoliation existing in the nanocomposites. The effects of these (simple intercalation or mixed intercalation/exfoliation) states and the effect of changing matrix polarity (by changing VA wt% content) on the nanocomposite mechanical behavior were studied. There is sufficient evidence from the mechanical studies that 1) the presence of nanoclay can simultaneously improve modulus and strength of the nanocomposites, and 2) the mechanical properties are a combined function of the clay concentration and the nanocomposite morphology (due to the VA wt% and presence of clay). It is shown here that interrelation between the VA wt% content and the clay exfoliation affects the mechanical properties in a way that has a positive and increasing slope with increasing loading of clay. It is shown that a clear understanding of the nanocomposite mechanical properties can be obtained from its morphological analysis. POLYM. ENG. SCI., 45:889–897, 2005. © 2005 Society of Plastics Engineers  相似文献   

13.
Organic–inorganic hybrids involving cyanate ester and hydroxyl‐terminated polydimethylsiloxane (HTPDMS) modified diglycidyl ether of bisphenol A (DGEBA; epoxy resin) filled with organomodified clay [montmorillonite (MMT)] nanocomposites were prepared via in situ polymerization and compared with unfilled‐clay macrocomposites. The epoxy‐organomodified MMT clay nanocomposites were prepared by the homogeneous dispersion of various percentages (1–5%), and the resulting homogeneous epoxy/clay hybrids were modified with 10% HTPDMS and γ‐aminopropyltriethoxysilane as a coupling agent in the presence of a tin catalyst. The siliconized epoxy/clay prepolymer was further modified separately with 10% of three different types of cyanate esters, namely, 4,4′‐dicyanato‐2,2′‐diphenylpropane, 1,1′‐bis(3‐methyl‐4‐cyanatophenyl) cyclohexane, and 1,3‐dicyanato benzene, and cured with diaminodiphenylmethane as a curing agent. The reactions during the curing process between the epoxy, siloxane, and cyanate were confirmed by Fourier transform infrared analysis. The results of dynamic mechanical analysis showed that the glass‐transition temperatures of the clay‐filled hybrid epoxy systems were lower than that of neat epoxy. The data obtained from mechanical studies implied that there was a significant improvement in the strength and modulus by the nanoscale reinforcement of organomodified MMT clay with the matrix resin. The morphologies of the siloxane‐containing, hybrid epoxy/clay systems showed heterogeneous character due to the partial incompatibility of HTPDMS. The exfoliation of the organoclay was ascertained from X‐ray diffraction patterns. The increase in the percentage of organomodified MMT clay up to 5 wt % led to a significant improvement in the mechanical properties and an insignificant decrease in the glass‐transition temperature versus the unfilled‐clay systems. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
Layered‐silicate‐based polymer–clay nanocomposite materials were prepared depending on the surface modification of montmorillonite (MMT). Nanocomposites consisting of poly(butylene terephthalate) (PBT) as a matrix and dispersed inorganic clay modified with cetyl pyridinium chloride (CPC), benzyl dimethyl N‐hexadecyl ammonium chloride, and hexadecyl trimethyl ammonium bromide by direct melt intercalation were studied. The organoclay loading was varied from 1 to 5 wt %. The organoclays were characterized with X‐ray diffraction (XRD) to compute the crystallographic spacing and with thermogravimetric analysis to study the thermal stability. Detailed investigations of the mechanical and thermal properties as well as a dispersion study by XRD of the PBT/clay nanocomposites were conducted. X‐ray scattering showed that the layers of organoclay were intercalated with intercalating agents. According to the results of a differential scanning calorimetry analysis, clay acted as a nucleating agent, affecting the crystallization. The PBT nanocomposites containing clay treated with CPC showed good mechanical properties because of intercalation into the polymer matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
In this study, styrene butadiene rubber (SBR)/organoclay nanocomposites were manufactured using the latex method with 3‐aminopropyltriethoxysilane (APTES) and N,N‐dimethyldodecylamine (DDA) as modifiers. The layer‐to‐layer distance of the silicates was observed according to each manufacturing process for APTES as the modifier using the X‐ray diffraction (XRD) method. From the XRD results and the TEM images, the dispersion of the silicates impoved for both APTES‐MMT and DDA‐MMT, and the dispersion of the silicates with the DDA modifier improved more than the APTES modifier. The SBR/DDA‐MMT compound exhibited the fastest scorch time, optimal vulcanization time, and cure rate. The dynamic viscoelastic properties of the SBR/APTES‐MMT compound were measured according to the change in the strain amplitude in order determine if a covalent bond was formed between APTES and bis(triethoxysilyl‐propyl)tetrasulfide (TESPT). The mechanical properties of the SBR/DDA‐MMT nanocomposite improved more than the SBR/APTES‐MMT composite because the vulcanization effects of alkylamine and the dispersion of silicates within the rubber matrix were relatively good. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Diglycidyl ether of bisphenol A (DGEBA) and diglycidyl ether of bisphenol F (DGEBF) reinforced with organo‐montmorillonite clay nanoplatelets were investigated using anhydride‐ and amine‐curing agents. The sonication technique was used to process epoxy/clay nanocomposites. The basal spacing of clay nanoplatelets was observed by wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS) techniques, and transmission electron microscopy. It was found that the basal spacing of clay nanoplatelets in epoxy matrix was expanded after mixing with either DGEBA/DGEBF or methyltetrahydrophthalic‐anhydride (MTHPA) curing agent. The sonication technique provided larger d‐spacing of clay nanoplatelets. Because of the different curing temperatures, MTHPA‐cured epoxy/clay nanocomposites produced more expanded d‐spacing of clay nanoplatelets modified with methyl, tallow, bis(2‐hydroxyethyl) quaternary ammonium (MT2EtOH) than triethylenetetramine‐cured nanocomposites. Depending on the selection of curing agent and organic modification for clay nanoplatelets, the d‐spacing was expanded to be up to 8.72 nm. POLYM. ENG. SCI., 46:452–463, 2006. © 2006 Society of Plastics Engineers  相似文献   

17.
BACKGROUND: In situ formation of polyethylene/clay nanocomposites is one of the prevalent preparation methods that include also solution blending and melt blending with regard to process simplification, economy in cost, environment protection and marked improvement in the mechanical properties of the polymeric matrix. In the work reported here, the preparation of linear low‐density polyethylene (LLDPE) and fabrication of polymer/clay nanocomposites were combined into a facile route by immobilizing pre‐catalysts for ethylene oligomerization on montmorillonite (MMT). RESULTS: [(2‐ArN?C(Me))2C5H3N]FeCl2 (Ar = 2,4‐Me2(C6H3)) was supported on MMT treated using three different methods. The MMT‐supported iron complex together with metallocene compound rac‐Et(Ind)2ZrCl2 catalyzed ethylene to LLDPE/MMT nanocomposites upon activation with methylaluminoxane. The oligomer that was formed between layers of MMT promoted further exfoliation of MMT layers. The LLDPE/MMT nanocomposites were highly stable upon heating. Detailed scanning electron microscopy analysis revealed that the marked improvement in impact strength of the LLDPE/MMT nanocomposites originated from the dispersed MMT layers which underwent cavitation upon impact and caused plastic deformation to absorb most of the impact energy. In general, the mechanical properties of the LLDPE/MMT nanocomposites were improved as a result of the uniform dispersion of MMT layers in the LLDPE matrix. CONCLUSION: The use of the MMT‐supported iron‐based diimine complex together with metallocene led to ethylene copolymerization between layers of MMT to form LLDPE/MMT nanocomposites. The introduction of exfoliated MMT layers greatly improved the thermal stability and mechanical properties of LLDPE. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
Soybean oil‐based polymer nanocomposites were synthesized from acrylated epoxidized soybean oil (AESO) combined with styrene monomer and montmorillonite (MMT) clay by using in situ free radical polymerization reaction. Special attention was paid to the modification of MMT clay, which was carried out by methacryl‐functionalized and quaternized derivative of methyl oleate intercalant. It was synthesized from olive oil triglyceride, as a renewable intercalant. The resultant nanocomposites were characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of increased nanofiller loading in thermal and mechanical properties of the nanocomposites was investigated by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The nanocomposites exhibited improved thermal and dynamic mechanical properties compared with neat acrylated epoxidized soybean oil based polymer matrix. The desired exfoliated nanocomposite structure was achieved when the OrgMMT loading was 1 and 2 wt % whereas partially exfoliated nanocomposite was obtained in 3 wt % loading. It was found that about 400 and 500% increments in storage modulus at glass transition and rubbery regions, respectively were achieved at 2 wt % clay loading compared to neat polymer matrix while the lowest thermal degradation rate was gained by introducing 3 wt % clay loading. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2031–2041, 2013  相似文献   

19.
The dispersion of MMT‐Na+ (montmorillonite) layers in a chitosan polymer matrix, using the homogenization, was performed. The effect of shear rate was characterized on the mechanical, barrier, and structural properties of nanocomposites. Elongation at break (EAB) was unaffected by shear rate, which decreased after homogenization, increased above 13,000 rpm, however, tensile strength (TS) dramatically increased up to 59 MPa at 16,000 rpm. Water vapor permeability (WVP) and oxygen permeability (OP) of the homogenized nanocomposite decreased more than that of untreated nanocomposite and OP was not significantly changed above 16,000 rpm of shear rate. XRD result and TEM images indicated that three types of tactoids, exfoliation, and intercalation were generated and the largest distance of 18.87 Å between MMT‐Na+ layers was produced at 16,000 rpm. The results indicate that homogenization was a beneficial method for effectively dispersing MMT‐Na+ layers in a chitosan polymer matrix and that a shear rate of 16,000 rpm was the effective condition. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Comprehensive high‐performance epoxy nanocomposites were successfully prepared by co‐incorporating organo‐montmorillonite (o‐MMT) and nano‐SiO2 into epoxy matrix. Because of the strong interaction between nanoscale particles, the MMT layers were highly exfoliated, and the exfoliated nanoscale MMT monoplatelets took an interlacing arrangement with the nano‐SiO2 particles in the epoxy matrix, as evidenced by X‐ray diffraction measurement and transmission electron microscopy inspection. Mechanical tests and thermal analyses showed that the resulting epoxy/o‐MMT/nano‐SiO2 nanocomposites improved substantially over pure epoxy and epoxy/o‐MMT nanocomposites in tensile modulus, tensile strength, flexural modulus, flexural strength, notch impact strength, glass transition temperature, and thermal decomposition temperature. This study suggests that co‐incorporating two properly selected nanoscale particles into polymer is one pathway to success in preparing comprehensive high‐performance polymer nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号