首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multifunctional nanohybrid composed of a pH‐ and thermoresponsive hydrogel, poly(N‐isopropylacrylamide‐co‐acrylic acid) [poly(NIPAM‐co‐AAc)], is synthesized in situ within the mesopores of an oxidized porous Si template. The hybrid is characterized by electron microscopy and by thin film optical interference spectroscopy. The optical reflectivity spectrum of the hybrid displays Fabry–Pérot fringes characteristic of thin film optical interference, enabling direct, real‐time observation of the pH‐induced swelling, and volume phase transitions associated with the confined poly(NIPAM‐co‐AAc) hydrogel. The optical response correlates to the percentage of AAc contained within the hydrogel, with a maximum change observed for samples containing 20% AAc. The swelling kinetics of the hydrogel are significantly altered due to the nanoscale confinement, displaying a more rapid response to pH or heating stimuli relative to bulk polymer films. The inclusion of AAc dramatically alters the thermoresponsiveness of the hybrid at pH 7, effectively eliminating the lower critical solution temperature (LCST). The observed changes in the optical reflectivity spectrum are interpreted in terms of changes in the dielectric composition and morphology of the hybrids.  相似文献   

2.
A pH responsive, chitosan‐based hydrogel film is used to cap the pores of a porous SiO2 layer. The porous SiO2 layer is prepared by thermal oxidation of an electrochemically etched Si wafer, and the hydrogel film is prepared by reaction of chitosan with glycidoxypropyltrimethoxysilane (GPTMS). Optical reflectivity spectroscopy and scanning electron microscopy (SEM) confirm that the bio‐polymer only partially infiltrates the porous SiO2 film, generating a double layer structure. The optical reflectivity spectrum displays Fabry–Pérot interference fringes characteristic of a double layer, which is characterized using reflective interferometric Fourier transform spectroscopy (RIFTS). Monitoring the position of the RIFTS peak corresponding to the hydrogel layer allows direct, real‐time observation of the reversible volume phase transition of the hydrogel upon cycling of pH in the range 6.0–7.4. The swelling ratio and response time are controlled by the relative amount of GPTMS in the hydrogel. The pH‐dependent volume phase transition can be used to release insulin trapped in the porous SiO2 layer underneath the hydrogel film. At pH 7.4, the gel in the top layer effectively blocks insulin release, while at pH 6.0 insulin penetrates the swollen hydrogel layer, resulting in a steady release into solution.  相似文献   

3.
The incorporation of a chemo‐responsive hydrogel into a 1D photonic porous silicon (PSi) transducer is demonstrated. A versatile hydrogel backbone is designed via the synthesis of an amine‐functionalized polyacrylamide copolymer where further amine‐specific biochemical reactions can enable control of cross‐links between copolymer chains based on complementary target–probe systems. As an initial demonstration, the incorporation of disulfide chemistry to control cross‐linking of this hydrogel system within a PSi Bragg mirror sensor is reported. Direct optical monitoring of a characteristic peak in the white light reflectivity spectrum of the incorporated PSi Bragg mirror facilitates real‐time detection of the hydrogel dissolution in response to the target analyte (reducing agent) over a timescale of minutes. The hybrid sensor response characteristics are shown to systematically depend on hydrogel cross‐linking density and applied target analyte concentration. Additionally, effects due to responsive hydrogel confinement in a porous template are shown to depend on pore size and architecture of the PSi transducer substrate. Sufficient copolymer and water is removed from the PSi transducer upon dissolution and drying of the hydrogel to induce color changes that can be detected by the unaided eye. This highlights the potential for future development for point‐of‐care diagnostic biosensing.  相似文献   

4.
A novel positively K+‐responsive membrane with functional gates driven by host‐guest molecular recognition is prepared by grafting poly(N‐isopropylacrylamide‐co‐acryloylamidobenzo‐15‐crown‐5) (poly(NIPAM‐co‐AAB15C5)) copolymer chains in the pores of porous nylon‐6 membranes with a two‐step method combining plasma‐induced pore‐filling grafting polymerization and chemical modification. Due to the cooperative interaction of host‐guest complexation and phase transition of the poly(NIPAM‐co‐AAB15C5), the grafted gates in the membrane pores could spontaneously switch from “closed” state to “open” state by recognizing K+ ions in the environment and vice versa; while other ions (e.g., Na+, Ca2+ or Mg2+) can not trigger such an ion‐responsive switching function. The positively K+‐responsive gating action of the membrane is rapid, reversible, and reproducible. The proposed K+‐responsive gating membrane provide a new mode of behavior for ion‐recognizable “smart” or “intelligent” membrane actuators, which is highly attractive for controlled release, chemical/biomedical separations, tissue engineering, sensors, etc.  相似文献   

5.
In this study, we report on a novel composite membrane system for pH‐responsive controlled release, which is composed of a porous membrane with linear grafted, positively pH‐responsive polymeric gates acting as functional valves, and a crosslinked, negatively pH‐responsive hydrogel inside the reservoir working as a functional pumping element. The proposed system features a large responsive release rate that goes effectively beyond the limit of concentration‐driven diffusion due to the pumping effects of the negatively pH‐responsive hydrogel inside the reservoir. The pH‐responsive gating membranes were prepared by grafting poly(methacrylic acid) (PMAA) linear chains onto porous polyvinylidene fluoride (PVDF) membrane substrates using a plasma‐graft pore‐filling polymerization, and the crosslinked poly(N,N‐dimethylaminoethyl methacrylate) (PDM) hydrogels were synthesized by free radical polymerization. The volume phase‐transition characteristics of PMAA and PDM were opposite. The proposed system opens new doors for pH‐responsive “smart” or “intelligent” controlled‐release systems, which are highly attractive for drug‐delivery systems, chemical carriers, sensors, and so on.  相似文献   

6.
In this study a blue‐light‐emitting conjugated polymer, poly(9,9‐dioctylfluorene), is confined to the interlayer space of inorganic, layered metal dichalcogenide materials, metallic MoS2, and semiconducting SnS2. The nanocomposites are prepared through Li intercalation into the inorganic compound, exfoliation, and restacking in the presence of the polymer. X‐ray diffraction and optical absorption measurements indicate that a single conjugated polymer monolayer, with an overall extended planar morphology conformation, is isolated between the inorganic sheets, so that polymer aggregation or π–π interchain interactions are significantly reduced. Photoluminescence (PL) measurements show that the appearance of the undesirable green emission observed in pristine polymer films is suppressed by incorporating the polymer into the inorganic matrix. The blue emission of the intercalated polymer is stable for extended periods of time, over two years, under ambient conditions. Furthermore, the green emission is absent in the PL spectra of nanocomposite films heated at 100 °C for 7 h in air with direct excitation of the keto defect. Finally, no green emission was observed in the electroluminescence spectrum of light‐emitting devices fabricated with a polymer‐intercalated SnS2 nanocomposite film. These results support the proposed hypothesis that fluorenone defects alone are insufficient to generate the green emission and that interchain interactions are also required.  相似文献   

7.
A photothermally sensitive poly(N‐isopropylacrylamide)/graphene oxide (PNIPAM/GO) nanocomposite hydrogel can be synthesized by in situ γ‐irradiation‐assisted polymerization of an aqueous solution of N‐isopropylacrylamide monomer in the presence of graphene oxide (GO). The colors and phase‐transition temperatures of the PNIPAM/GO hydrogels change with different GO doping levels. Due to the high optical absorbance of the GO, the nanocomposite hydrogel shows excellent photothermal properties, where its phase transitions can be controlled remotely by near‐infrared (NIR) laser irradiation, and it is completely reversible via laser exposure or non‐exposure. With a higher GO loading, the NIR‐induced temperature of the nanocomposite hydrogel increases more quickly than with a lower doping level and the temperature can be tuned effectively by the irradiation time. The nanocomposite hydrogel with its excellent photothermal properties will have great applications in the biomedical field, especially as microfluidic devices; this has been demonstrated in our experiments by way of remote microvalves to control fluidic flow. Such an “easy” and “clean” synthetic procedure initiated by γ‐irradiation can be extended for the efficient synthesis of other nanocomposite materials.  相似文献   

8.
The use of a new class of hybrid nanomaterials as label‐free optical biosensors for bacteria detection (E. coli K12 as a model system) is demonstrated. The hybrids combine a porous SiO2 (PSiO2) optical nanostructure (a Fabry–Pérot thin film) used as the optical transducer element and a hydrogel. The hydrogel, polyacrylamide, is synthesized in situ within the nanostructure inorganic host and conjugated with specific monoclonal antibodies (IgGs) to provide the active component of the biosensor. The immobilization of the IgGs onto the hydrogel via a biotin‐streptavidin system is confirmed by fluorescent labeling experiments and reflective interferometric Fourier transform spectroscopy (RIFTS). Additionally, the immobilized IgGs maintain their immunoactivity and specificity when attached to the sensor surface. Exposure of these modified‐hybrids to the target bacteria results in “direct cell capture” onto the biosensor surface. These specific binding events induce predictable changes in the thin‐film optical interference spectrum of the hybrid. Preliminary studies demonstrate the applicability of these biosensors for the detection of low bacterial concentrations in the range of 103–105 cell mL?1 within minutes.  相似文献   

9.
Extending the portfolio of novel stimuli‐responsive, high‐refractive‐index (RI) materials besides titania is key to improve the optical quality and sensing performance of existing photonic devices. Herein, lithium tin sulfide (LTS) nanosheets are introduced as a novel solution processable ultrahigh RI material (n = 2.50), which can be casted into homogeneous thin films using wet‐chemical deposition methods. Owing to its 2D morphology, thin films of LTS nanosheets are able to swell in response to changes of relative humidity. Integration of LTS nanosheets into Bragg stacks (BSs) based on TiO2, SiO2, nanoparticles or H3Sb3P2O14 nanosheets affords multilayer systems with high optical quality at an extremely low device thickness of below 1 µm. Owing to the ultrahigh RI of LTS nanosheets and the high transparency of the thin films, BSs based on porous titania as the low‐RI material are realized for the first time, showing potential application in light‐managing devices. Moreover, the highest RI contrast ever realized in BSs based on SiO2 and LTS nanosheets is reported. Finally, exceptional swelling capability of an all‐nanosheet BS based on LTS and H3Sb3P2O14 nanosheets is demonstrated, which bodes well for a new generation of humidity sensors with extremely high sensitivity.  相似文献   

10.
We study the photorefractive (PR) properties of a new kind of low glass‐transition temperature (Tg) polymer composite based on layered photoconductive polymers, poly(p‐phenylene terephthalate) carbazoles (PPT‐CZs). These photoconductors consist of the rigid backbone of PPT with pendant oxyalkyl CZ groups. The compounds are doped with the photosensitizer C60 and nonlinear optical chromophores diethylaminodicyanostyrene (DDCST), and no plasticizers are added. When the host polymers are mixed with various PR ingredients, the layers are preserved and their layer distance increases, indicating that all the guest molecules are confined to the nanoscale interlayer space. These composites showed very low Tg values (< ? °C). Despite the absence of a plasticizer and the lower concentration of the carbazole photoconductive moieties as compared to poly(N‐vinylcarbazole) systems, these materials show excellent PR properties, i.e., a PR gain of Γ = 250 cm–1 under an external electric field of 60 V μm–1, and diffraction efficiency and PR sensitivity of 93 % and 24 ± 7 cm2 kJ–1 at E = 100 V μm–1, respectively.  相似文献   

11.
Novel poly(N‐isopropylacrylamide)‐clay (PNIPAM‐clay) nanocomposite (NC) hydrogels with both excellent responsive bending and elastic properties are developed as temperature‐controlled manipulators. The PNIPAM‐clay NC structure provides the hydrogel with excellent mechanical property, and the thermoresponsive bending property of the PNIPAM‐clay NC hydrogel is achieved by designing an asymmetrical distribution of nanoclays across the hydrogel thickness. The hydrogel is simply fabricated by a two‐step photo polymerization. The thermoresponsive bending property of the PNIPAM‐clay NC hydrogel is resulted from the unequal forces generated by the thermoinduced asynchronous shrinkage of hydrogel layers with different clay contents. The thermoresponsive bending direction and degree of the PNIPAM‐clay NC hydrogel can be adjusted by controlling the thickness ratio of the hydrogel layers with different clay contents. The prepared PNIPAM‐clay NC hydrogels exhibit rapid, reversible, and repeatable thermoresponsive bending/unbending characteristics upon heating and cooling. The proposed PNIPAM‐clay NC hydrogels with excellent responsive bending property are demonstrated as temperature‐controlled manipulators for various applications including encapsulation, capture, and transportation of targeted objects. They are highly attractive material candidates for stimuli‐responsive “smart” soft robots in myriad fields such as manipulators, grippers, and cantilever sensors.  相似文献   

12.
Multifaceted porous materials were prepared through careful design of star polymer functionality and properties. Functionalized core crosslinked star (CCS) polymers with a low glass transition temperature (Tg) based on poly(methyl acrylate) were prepared having a multitude of hydroxyl groups at the chain ends. Modification of these chain ends with 9‐anthracene carbonyl chloride introduces the ability to reversibly photocrosslink these systems after the star polymers were self‐assembled by the breath figure technique to create porous, micro‐structured films. The properties of the low Tg CCS polymer allow for the formation of porous films on non‐planar substrates without cracking and photo‐crosslinking allows the creation of stabilized honeycomb films while also permitting a secondary level of patterning on the film, using photo‐lithographic techniques. These multifaceted porous polymer films represent a new generation of well‐defined, 3D microstructures.  相似文献   

13.
A bioinorganic nanohybrid glucose‐responsive membrane is developed for self‐regulated insulin delivery analogous to a healthy human pancreas. The application of MnO2 nanoparticles as a multifunctional component in a glucose‐responsive, protein‐based membrane with embedded pH‐responsive hydrogel nanoparticles is proposed. The bio‐nanohybrid membrane is prepared by crosslinking bovine serum albumin (BSA)–MnO2 nanoparticle conjugates with glucose oxidase and catalase in the presence of poly(N‐isopropyl acrylamide‐co‐methacrylic acid) nanoparticles. The preparation and performance of this new nanocomposite material for a glucose‐responsive insulin release system is presented. The activity and stability of immobilized glucose oxidase and the morphology and mechanical properties of the membrane are investigated. The enzymatic activity is well preserved in the membranes. The use of MnO2 nanoparticles not only reinforces the mechanical strength and the porous structure of the BSA‐based membrane, but enhances the long‐term stability of the enzymes. The in vitro release of insulin across the membrane is modulated by changes in glucose concentration mimicking possible fluctuations of blood‐glucose level in diabetic patients. A four‐fold increase in insulin permeation is observed when the glucose concentration is increased from normal to hyperglycemic levels, which returns to the baseline level when the glucose concentration is reduced to a normal level.  相似文献   

14.
15.
Light strongly interacts with structures that are of a similar scale to its wavelength, typically nanoscale features for light in the visible spectrum. However, the optical response of these nanostructures is usually fixed during the fabrication. Phase change materials offer a way to tune the properties of these structures in nanoseconds. Until now, phase change active photonics has used materials that strongly absorb visible light, which limits their application in the visible spectrum. In contrast, Sb2S3 is an underexplored phase change material with a bandgap that can be tuned in the visible spectrum from 2.0 to 1.7 eV. This tuneable bandgap is deliberately coupled to an optical resonator such that it responds dramatically in the visible spectrum to Sb2S3 reversible structural phase transitions. It is shown that this optical response can be triggered both optically and electrically. High‐speed reprogrammable Sb2S3 based photonic devices, such as those reported here, are likely to have wide applications in future intelligent photonic systems, holographic displays, and microspectrometers.  相似文献   

16.
The temperature coefficient of resistance of a carbon nanotube nanocomposite with the non‐conductive phase‐change hydrogel Poly(N‐isopropylacrylamide) is studied. This nanocomposite is found to achieve the largest reported temperature coefficient of resistance, ≈?10%/°C, observed in carbon nanotube‐polymer nanocomposites to date. The giant temperature coefficients of resistance results from a volume‐phase‐transition that is induced by the humidity present in the surrounding atmosphere and that enhances the temperature dependence of the resistivity via direct changes in the tunneling resistance that electrons experience in moving between nearby carbon nanotubes. The bolometric photoresponses of this new material are also studied. The nanocomposite's enhanced responses to temperature and humidity give it great potential for sensor applications and uncooled infrared detection.  相似文献   

17.
Rechargeable battery cells having a liquid electrolyte require a separator permeable to the electrolyte between the two electrodes. Because the electrodes change their volume during charge and discharge, the porous separators are flexible polymers with an electronic energy gap Eg large enough for the Fermi levels of the two electrodes to be within it. In this work, a porous film of self‐assembled SiO2 nanoparticles is developed as the separator for a Li‐ion battery with a liquid electrolyte. This coating does not require the plasticity of a polymer membrane and has the required large Eg. If adsorbed water is removed from the SiO2 surface, the nanoparticles bond to one another and to an oxide cathode to form a plastic self‐assembling porous layer into which the liquid electrolyte can penetrate. The Li‐ion batteries with a LiCoO2 cathode coated with SiO2 as a separator show similar performance to cells with a traditional polypropylene separator and improved cyclability with a reduced volume of liquid electrolyte owing to the electrolyte wetting properties of the SiO2 nanoparticles. The SiO2 nanoparticles are easy to prepare, cheap, and environmentally friendly.  相似文献   

18.
2D nanoscale oxides have attracted a large amount of research interest due to their unique properties. Here, a facile synthetic approach to prepare graphene‐mimicking, porous 2D Co3O4 nanofoils using graphene oxide (GO) as a sacrificial template is reported. The thermal instability of graphene, as well as the catalytic ability of Co3O4 particles to degrade carbon backbones, allow the fabrication of porous 2D Co3O4 nanofoils without the loss of the 2D nature of GO. Based on these results, a graphene mimicking as a route for large‐area 2D transition metal oxides for applications in electrochemical energy storage devices is proposed. As a proof of concept, it is demonstrated that graphene‐like, porous 2D Co3O4 nanofoils exhibit a high reversible capacity (1279.2 mAh g?1), even after 50 cycles. This capacity is far beyond the theoretical capacity of Co3O4 based on the conversion mechanism from Co3O4 to Li2O and metallic Co.  相似文献   

19.
In this article we demonstrate the synthesis of Eu2+‐doped GaN/SiO2 nanocomposites using a simple solid state reaction and their use in light‐emitting devices. The nanocomposite exhibits a bright blue luminescence when excited in the UV region (quantum yield = 23 %). The origin of the blue emission is attributed to the presence of europium ions in the +2 oxidation state in the GaN/SiO2 nanocomposites. Analysis of the EPR spectrum of europium‐doped GaN/SiO2 nanocomposites confirms the existence of Eu2+ in the nanocomposites. Various control experiments show that the blue emission arises from these europium ions and that the interface of GaN and silica plays a crucial role. The Eu2+‐doped GaN/SiO2 nanocomposite also exhibits a bright blue electroluminescence. Furthermore, the nanocomposites can be coated with a polymer to tune their dispersibility in organic medium.  相似文献   

20.
Materials with large optical activity at visible wavelengths are of great interest in photonics, particularly as one of the routes towards optical metamaterials. Here, dramatic structural enhancement of the optical activity of chiral poly(fluorene‐alt‐benzothiadiazole) (PFBT) when dispersed in SU‐8 to form a nanocomposite is reported. The supramolecular helical organization of PFBT chains in these optically clear nanocomposite films produces specific rotation at visible wavelengths that is 68 times that of a pure chiral PFBT film of the same optical absorbance. Photopatterning and development under standard conditions for SU‐8 leave behind a residual film of dispersed PFBT/SU‐8 aggregates in the nominally unexposed regions where the SU‐8 matrix is removed. After annealing, the patterned film exhibits specific rotation 58 times that of a pure chiral PFBT film of the same optical absorbance. Photopatterned and annealed films have a dissymmetry ratio as high as |gabs| = 0.32. This dramatic enhancement is attributed to supramolecular helical organization of the aggregates within the nanocomposites and of the aggregates liberated from the SU‐8 matrix in the exposed regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号