首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Phenyltrimethoxysilane was used to modify SiO2 insulator and significantly enhanced the pentacene based organic thin-film transistors (OTFTs). The crystal structure, surface morphology, molecular structure and microstructure of pentacene polymorphic films with and without the modifications were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and contact angle meter. XRD studies reveal a decreased tilt angle (θT) of pentacene molecules from c-axis toward a-axis, indicating that polymorphs transformation from the “triclinic bulk” phase to the “thin film” phase and orthorhombic phase occurs. AFM images show that the surface roughness of gate insulators has no influence on performance of the pentacene based OTFT. These results provide strong evidence that the performance improvement of OTFT after PhTMS modification of SiO2 insulator surface is related to the microstructure transformation of the semiconductor. It suggests that the modified-layer may alter the molecular geometry and further induce structural phase transitions in the pentacene films for the performance improvement.  相似文献   

2.
This work presents a low temperature with high resolution capability UV-patternable polymer, i.e. mr-UVCur06, for use as a gate insulator in OTFTs, by investigating the morphology transformation of pentacene deposited on the mr-UVCur06. The device structure is polyethylene terephthalate (PET)/indium-tin oxide (ITO)/mr-UVCur06/pentacene/Au (source/drain). In addition to its solution-processable capability, mr-UVCur06 is directly patterned by UV light in a low-temperature process. UV/ozone post-treatment of the patternable mr-UVCur06 can illuminate organic contaminants from its surface and increases surface energy. Experimental results indicate that a high surface energy existing at the mr-UVCur06 surface has produced in a larger ratio of Ithin film phase/Itriclinic bulk phase in pentacene. Then, the distance of pentacene molecular crystal structure, which is arranged in the thin film phase, is shorter than that in triclinic bulk phase. The performance of pentacene-based OTFTs can be enhanced with few contaminants and a high surface energy on the UV-patternable gate insulator. By performing UV/ozone post-treatment on the mr-UVCur06 insulator surface for 60 s, the OTFTs demonstrate a mobility, on/off drain current ratio, and VT of 0.34 cm2/V s, 5.5 × 104, and 2.5 V, respectively. Furthermore, the low-temperature photopatternable polymer dielectric paves the way for a relatively easy and low-cost fabrication of an OTFT array without expensive and complicated photolithography and dry etching.  相似文献   

3.
We investigate the effect of surface topology of a block copolymer/neutral surface/SiO2 trilayered gate insulator on the properties of pentacene organic thin film transistor (OTFT) by the controlled etching of self assembled poly(styrene‐b‐methyl methacrylate) (PS‐b‐PMMA) block copolymer. The rms roughness of the uppermost block copolymer film directly in contact with pentacenes was systematically controlled from 0.27 nm to approximately 12.5 nm by the selective etching of cylindrical PMMA microdomains hexagonally packed and aligned perpendicular to SiO2 layer with 20 and 38 nm of diameter and periodicity, respectively. Both mobility and On/Off ratio were significantly reduced by more than 3 orders of magnitudes with the film roughness in OTFTs having 60 nm thick pentacene active layer. The poor device performance observed with the etched thin film of block copolymer dielectric is attributed to a defective pentacene active layer and the mixed crystalline structure consisting of thin film and bulk phase arising from the massive nucleation of pentacene preferentially at the edge of each cylindrical etched hole.  相似文献   

4.
Compared to traditional vacuum evaporation techniques for small organic molecules, organic vapor phase deposition (OVPD) possesses a extra processing parameter: the pressure of process gas Pch. Here, the influence of large Pch variations (from 0.1 mbar to atmospheric pressure) on pentacene thin film growth is explored. OVPD operation at higher Pch is characterized by lower carrier gas velocities and lower organic diffusivities. These result in an invariance of the material utilization efficiency over the entire pressure span and in an advantageous equilibrium evaporation regime in the source. An increase in Pch yields rough pentacene layers. Classical nucleation theory is applied to demonstrate how the pressure rise triggers homogeneous nucleation in the gas phase, causing the observed roughening. The use of lower deposition rates, higher dilution flow rates, and higher substrate temperatures result in the suppression of gas phase nucleation and the growth of smooth pentacene films at atmospheric pressure. Using these optimized conditions, state‐of‐the‐art pentacene thin film transistors with saturation mobilities above 0.9 cm2/Vs are reproducibly fabricated. p‐Type circuits are also made and a 19‐stage ring oscillator with a stage delay of 51 μs at a supply voltage of 15 V is demonstrated.  相似文献   

5.
In this study, inorganic silica nanoparticles are used to manipulate the morphology of 6,13‐bis(triisopropylsilylethynyl)‐pentacene (TIPS pentacene) thin films and the performance of solution‐processed organic thin‐film transistors (OTFTs). This approach is taken to control crystal anisotropy, which is the origin of poor consistency in TIPS pentacene based OTFT devices. Thin film active layers are produced by drop‐casting mixtures of SiO2 nanoparticles and TIPS pentacene. The resultant drop‐cast films yield improved morphological uniformity at ~10% SiO2 loading, which also leads to a 3‐fold increase in average mobility and nearly 4 times reduction in the ratio of measured mobility standard deviation (μStdev) to average mobility (μAvg). Grazing‐incidence X‐ray diffraction, scanning and transmission electron microscopy as well as polarized optical microscopy are used to investigate the nanoparticle‐mediated TIPS pentacene crystallization. The experimental results suggest that the SiO2 nanoparticles mostly aggregate at TIPS pentacene grain boundaries, and 10% nanoparticle concentration effectively reduces the undesirable crystal misorientation without considerably compromising TIPS pentacene crystallinity.  相似文献   

6.
CZTSSe thin‐film absorbers were grown by stacked ZnS/SnS/Cu sputtering with compound targets, and the precursors were annealed in a furnace with a Se atmosphere. We controlled the thickness of the ZnS precursor layer for the CZTSSe thin films in order to reduce the secondary phases and to improve the performance of the devices. The optimal value of the ZnS precursor thickness was determined for the CZTSSe absorbers, and this configuration showed an efficiency of up to 9.1%. In this study, we investigated the depth profiles of the samples in order to determine the presence of secondary phases in the CZTSSe thin films by Raman spectroscopy and Kelvin probe force microscopy. Cu2SnSe3, ZnSe, and MoSe2 secondary phases appeared near the back contact, and the work function distribution of the CZTSSe thin‐film surface and the secondary phase distribution were different depending on the depths of the absorber layer. This phase characterization allows us to describe the effects that changes in the thickness of the ZnS precursor can have on the performance of the CZTSSe thin‐film solar cells. Although it is important to identify the phases, the effects of secondary phases and point defects are not yet fully understood, even in optimal devices. Therefore, phase identification that is based on the work function and the results obtained from the Raman spectra in terms of the depth profile are instrumental to improve the surface and interface of CZTSSe thin‐film solar cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
We report confocal micro‐Raman spectra of the organic semiconductor α‐sexithiophene (T6) on bulk crystals and on thin films grown on technologically relevant substrates and devices. We show that the two polymorphs, which are clearly identified by their lattice phonon spectra, may coexist as physical impurities of one inside the other in the same crystallite. Spatial distribution of the two phases is monitored by Raman phonon mapping of crystals grown upon different conditions. Raman microscopy has then been extended to T6 thin films grown on silicon oxide wafers. We identify the crystal phase in thin films whose thickness is just 18 nm. The most intense total‐symmetric Raman vibration is still detectable for a two‐monolayer thick film. Comparative analysis between micro‐Raman and AFM of T6 thin films grown on field effect transistors shows that electrode‐channel steps favour the nucleation and growth of T6 molecules on the substrate, at least below 50 nm.  相似文献   

8.
To enhance the electrical performance of pentacene‐based field‐effect transistors (FETs) by tuning the surface‐induced ordering of pentacene crystals, we controlled the physical interactions at the semiconductor/gate dielectric (SiO2) interface by inserting a hydrophobic self‐assembled monolayer (SAM, CH3‐terminal) of organoalkyl‐silanes with an alkyl chain length of C8, C12, C16, or C18, as a complementary interlayer. We found that, depending on the physical structure of the dielectric surfaces, which was found to depend on the alkyl chain length of the SAM (ordered for C18 and disordered for C8), the pentacene nano‐layers in contact with the SAM could adopt two competing crystalline phases—a “thin‐film phase” and “bulk phase” – which affected the π‐conjugated nanostructures in the ultrathin and subsequently thick films. The field‐effect mobilities of the FET devices varied by more than a factor of 3 depending on the alkyl chain length of the SAM, reaching values as high as 0.6 cm2 V?1 s?1 for the disordered SAM‐treated SiO2 gate‐dielectric. This remarkable change in device performance can be explained by the production of well π‐conjugated and large crystal grains in the pentacene nanolayers formed on a disordered SAM surface. The enhanced electrical properties observed for systems with disordered SAMs can be attributed to the surfaces of these SAMs having fewer nucleation sites and a higher lateral diffusion rate of the first seeding pentacene molecules on the dielectric surfaces, due to the disordered and more mobile surface state of the short alkyl SAM.  相似文献   

9.
Titanium dioxide (TiO2) thin films were synthesized on glass substrates by spray pyrolysis. The effect of solution flow rate on the physical properties of the films was investigated by use of x-ray diffraction (XRD), scanning electron microscopy, atomic force microscopy (AFM), and spectrophotometry techniques. XRD analysis revealed the tetragonal anatase phase of TiO2 with highly preferred (101) orientation. AFM images showed that grain size on top of TiO2 thin films depended on solution flow rate. An indirect band gap energy of 3.46 eV was determined by means of transmission and reflection measurements. The envelope method, based on the optical transmission spectrum, was used to determine film thickness and optical constants, for example real and imaginary parts of the dielectric constant, refractive index, and extinction coefficient. Ultraviolet and visible photoluminescence emission peaks were observed at room temperature. These peaks were attributed to the intrinsic emission and to the surface defect states, respectively.  相似文献   

10.
We demonstrate that a crystalline pentacene molecular templating layer considerably changes the morphology of the subsequently deposited lead phthalocyanine (PbPc) layer, resulting in an improved crystallinity at the early stages of growth of the PbPc film and a higher content of the triclinic phase. For bilayer PbPc (20 nm)/C60 (40 nm) organic solar cells with or without the pentacene templating layer, the use of the pentacene templating layer leads to a 48% enhancement in the short-circuit current without noticeably affecting the solar cell open-circuit voltage or fill factor. A copper or zinc phthalocyanine molecular templating layer also leads to enhanced photovoltaic response from the PbPc/C60 cells, though less significant than the pentacene template. The improved device performance originates from stronger absorption by the triclinic PbPc phase in the near infrared and the enhanced internal quantum efficiency over the entire spectrum where PbPc absorbs.  相似文献   

11.
We report on electric‐field‐induced irreversible structural modifications in pentacene thin films after long‐term operation of organic field‐effect transistor (OFET) devices. Micro‐Raman spectroscopy allows for the analysis of the microstructural modifications of pentacene in the small active channel of OFET during device operation. The results suggest that the herringbone packing of pentacene molecules in a solid film is affected by an external electric field, particularly the source‐to‐drain field that parallels the a–b lattice plane. The analysis of vibrational frequency and Davydov splitting in the Raman spectra reveals a singular behavior suggesting a reduced separation distance between pentacene molecules after long‐term operations and, thus, large intermolecular interactions. These results provide evidence for improved OFET performance after long‐term operation, related to the microstructures of organic semiconductors. It is known that the application of large electric fields alters the semiconductor properties of the material owing to the generation of defects and the trapping of charges. However, we first suggest that large electric fields may alter the molecular geometry and further induce structural phase transitions in the pentacene films. These results provide a basis for understanding the improved electronic properties in test devices after long‐term operations, including enhanced field‐effect mobility, improved on/off current ratio, sharp sub‐threshold swing, and a slower decay rate in the output drain current. In addition, the effects of source‐to‐drain electric field, gate electric field, current and charge carriers, and thermal annealing on the pentacene films during OFET operations are discussed.  相似文献   

12.
In this study, pentacene thin‐film transistors (TFTs) operating at low voltages with high mobilities and low leakage currents are successfully fabricated by the surface modification of the CeO2–SiO2 gate dielectrics. The surface of the gate dielectric plays a crucial role in determining the performance and electrical reliability of the pentacene TFTs. Nearly hysteresis‐free transistors are obtained by passivating the devices with appropriate polymeric dielectrics. After coating with poly(4‐vinylphenol) (PVP), the reduced roughness of the surface induces the formation of uniform and large pentacene grains; moreover, –OH groups on CeO2–SiO2 are terminated by C6H5, resulting in the formation of a more hydrophobic surface. Enhanced pentacene quality and reduced hysteresis is observed in current–voltage (I–V) measurements of the PVP‐coated pentacene TFTs. Since grain boundaries and –OH groups are believed to act as electron traps, an OH‐free and smooth gate dielectric leads to a low trap density at the interface between the pentacene and the gate dielectric. The realization of electrically stable devices that can be operated at low voltages makes the OTFTs excellent candidates for future flexible displays and electronics applications.  相似文献   

13.
Multicomponent magnetic phase diagrams are a key property of functional materials for a variety of uses, such as manipulation of magnetization for energy efficient memory, data storage, and cooling applications. Strong spin‐lattice coupling extends this functionality further by allowing electric‐field‐control of magnetization via strain coupling with a piezoelectric. Here this work explores the magnetic phase diagram of piezomagnetic Mn3NiN thin films, with a frustrated noncollinear antiferromagnetic (AFM) structure, as a function of the growth induced biaxial strain. Under compressive strain, the films support a canted AFM state with large coercivity of the transverse anomalous Hall resistivity, ρxy, at low temperature, that transforms at a well‐defined Néel transition temperature (TN) into a soft ferrimagnetic‐like (FIM) state at high temperatures. In stark contrast, under tensile strain, the low temperature canted AFM phase transitions to a state where ρxy is an order of magnitude smaller and therefore consistent with a low magnetization phase. Neutron scattering confirms that the high temperature FIM‐like phase of compressively strained films is magnetically ordered and the transition at TN is first‐order. The results open the field toward future exploration of electric‐field‐driven piezospintronic and thin film caloric cooling applications in both Mn3NiN itself and the broader Mn3AN family.  相似文献   

14.
本文采用化学水浴法沉积CuxS薄膜,通过改变Cu元素比例研究其对碲化镉电池效率的影响。研究表明化学水浴法沉积的CuxS是非晶的,采用适当退火条件可以使其晶化,随着退火温度的提高,薄膜变得致密且结晶明显。CuxS薄膜厚度对电池性能有很大的影响,结果表明,随着CuxS薄膜厚度增加,电池性能先增加后减少。薄膜厚度为75nm时,CdS/CdTe电池性能最佳,达到了最高转化效率(η)为12.19%,填充因子(FF)为68.82%,开路电压(Voc)为820mV。  相似文献   

15.
The 2D semiconductor indium selenide (InSe) has attracted significant interest due its unique electronic band structure, high electron mobility, and wide tunability of its band gap energy achieved by varying the layer thickness. All these features make 2D InSe a potential candidate for advanced electronic and optoelectronic applications. Here, the discovery of new polymorphs of InSe with enhanced electronic properties is reported. Using a global structure search that combines artificial swarm intelligence with first‐principles energetic calculations, polymorphs that consist of a centrosymmetric monolayer belonging to the point group D3d are identified, distinct from well‐known polymorphs based on the D3h monolayers that lack inversion symmetry. The new polymorphs are thermodynamically and kinetically stable, and exhibit a wider optical spectral response and larger electron mobilities compared to the known polymorphs. Opportunities to synthesize these newly discovered polymorphs and viable routes to identify them by X‐ray diffraction, Raman spectroscopy, and second harmonic generation experiments are discussed.  相似文献   

16.
The feasibility of measuring contact wetting angles to characterize processing induced changes to thin film semiconductors in CdTe/CdS solar cells is evaluated. The contact angles of water and formamide are used to determine the polar and dispersive surface energies of the thin films using two analysis methods. Changes in surface energies resulting from processing are correlated to changes in surface chemistry and structure detected by glancing incidence X‐ray diffraction (GIXRD), X‐ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Surface energies are evaluated for sputtered In2O3:SnO2, chemical surface‐deposited CdS, and physical vapor‐deposited (PVD) CdTe thin films under as‐deposited and treated conditions. Treatments include thermal anneal in air, argon, and CdCl2 ambient as well as surface etching. Indium tin oxide (ITO) and CdS films exhibit increased polar surface energy corresponding to enhanced crystallization of surfaces resulting from processing and increasing CdS growth temperature. Native oxidation of PVD CdTe (111)‐oriented film surfaces occurs rapidly and is readily detected by changes in contact angle. Surface energies of PVD (111)‐oriented CdTe stored under various humidities prior to processing are energetically similar due to native oxidation. The polar energy of CdTe surfaces is affected by the addition or removal of crystalline surface oxides during film processing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Single-phase rutile TiO2 films with good crystallinity were obtained by thermal oxidation of sputtered Ti films on Si and quartz substrates. The influence of the Ti film thickness on oxidation was systematically investigated. A temperature of 823 K was sufficient to fully oxidize Ti films of <0.2 μm in thickness, but 923 K was required for complete oxidation of thicker films. The crystal structure, phase, composition, and optical properties of the TiO2 films were investigated using X-ray diffraction (XRD), Raman spectroscopy, energy-dispersive X-ray analysis (EDAX), and UV-vis-NIR spectroscopy. XRD and Raman analyses showed that the TiO2 films are rutile phase. The bandgap of the TiO2 films decreased with increasing thickness. A growth mechanism for TiO2 thin films due to thermal oxidation of sputtered Ti films is proposed. Oxidation commences from the surface and proceeds inside the bulk and Ti→TiO2 phase transformation occurs via different intermediate phases. We found that the oxidation temperature rather than the duration is the dominant factor in the growth of TiO2 thin films.  相似文献   

18.
Triblock copolymer surfactant, HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20H (i.e. P123)-based nanocrystalline (nc)-TiO2 thin film had been synthesized on organic flexible polyimide (PI) sheet for their application in organic metal–insulator–semiconductor (MIS) device. The nc-TiO2 film over PI was successfully deposited for the first time by a systematic solution proceeds dip-coating method and by the assistance of triblock copolymer surfactant. The effect of annealing temperature (270 °C, 5 h) on the texture, morphology and time-induced hydrophilicity was studied by X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle system, respectively, to examine the chemical composition of the film and the contact angle. The surface morphology of the semiconducting layer of organic pentacene was also investigated by using AFM and XRD, and confirmed that continuous crystalline film growth had occurred on the nc-TiO2 surface over flexible PI sheet. The semiconductor–dielectric interface of pentacene and nc-TiO2 films was characterized by current–voltage and capacitance–voltage measurements. This interface measurement in cross-link MIS structured device yielded a low leakage current density of 8.7 × 10?12 A cm?2 at 0 to ?5 V, maximum capacitance of 102.3 pF at 1 MHz and estimated dielectric constant value of 28.8. Furthermore, assessment of quality study of nc-TiO2 film in real-life flexibility tests for different types of bending settings with high durability (c.a. 30 days) demonstrated a better comprehension of dielectric properties over flexible PI sheet. We expected them to have a keen interest in the scientific study, which could be an alternate opportunity to the excellent dielectric–semiconductor interface at economic and low temperature processing for large-area flexible field-effect transistors and sensors.  相似文献   

19.
Small molecule pentacene layer has been a representative among many organic thin‐film transistor (OTFT) channels with decent p‐type mobilities, but it is certainly light‐sensitive due to its relatively small highest occupied molecular orbital‐lowest unoccupied molecular orbital (HOMO‐LUMO) gap (1.85 eV). Although a few other small molecule‐based layers have been reported later, their photo‐stabilities or related device applications have hardly been addressed. Here, a new photostable organic layer is reported, heptazole (C26H16N2), which has almost the same HOMO level as that of pentacene but with a higher HOMO‐LUMO gap (≈2.95 eV). This heptazole OTFT displays a decent mobility comparable to that of conventional amorphous Si TFTs, showing good photostability unlike pentacene OTFTs. An image pixel driving the photostable heptazole OTFT connected to a pentacene/Al Schottky photodiode is demonstrated. This heptazole OTFT also conveniently forms a logic inverter coupled with a pentacene OTFT, sharing Au for source/drain.  相似文献   

20.
The surface structure of uniaxially aligned poly(9,9‐bis(ethylhexyl)‐fluorene‐2,7‐diyl) films on rubbed polyimide has been studied as a function of molecular weight (Mn = 3–150 kg mol–1, number‐average molecular weight) using polarized microscopy, atomic force microscopy (AFM), X‐ray reflectivity, and grazing‐incidence X‐ray diffraction. At the threshold Mn, Mn* = 104 g mol–1, there is a prominent transition in morphology from featureless (Mn < Mn*) to rough (Mn > Mn*), corresponding to the nematic–hexagonal phase transition. The hexagonal phase reveals two coexistent crystallite types in the whole film and at least one crystallite type has been observed at the surface by AFM. The combined optimization of alignment and surface smoothness is achieved slightly below Mn* while the combined optimization of orientational and local order and moderately smooth surface is achieved slightly above Mn*.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号