首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hard, biological materials are generally hierarchically structured from the nano- to the macro-scale in a somewhat self-similar manner consisting of mineral units surrounded by a soft protein shell. Considerable efforts are underway to mimic such materials because of their structurally optimized mechanical functionality of being hard and stiff as well as damage-tolerant. However, it is unclear how different hierarchical levels interact to achieve this performance. In this study, we consider dental enamel as a representative, biological hierarchical structure and determine its flexural strength and elastic modulus at three levels of hierarchy using focused ion beam (FIB) prepared cantilevers of micrometre size. The results are compared and analysed using a theoretical model proposed by Jäger and Fratzl and developed by Gao and co-workers. Both properties decrease with increasing hierarchical dimension along with a switch in mechanical behaviour from linear-elastic to elastic-inelastic. We found Gao''s model matched the results very well.  相似文献   

2.
Based on the concept of the damage-tolerance and durability design, the total fatigue life of titanium alloys is divided into three phases: crack initiation (0–0.3 mm), short crack growth (0.3–2 mm) and long crack growth (2 mm–aC). Among these three phases, different prediction models are accepted due to different failure mechanisms. A computer program was developed to predict the total fatigue life of the titanium alloy structure. Fatigue testing is also conducted for two types of ELI grade titanium alloy to verify the prediction models. The predicted fatigue life agrees well with experimental results.  相似文献   

3.
4.
A complete theoretical analysis is presented of the operation of a magnetoelastic amorphous metal low-frequency magnetic field sensor. This directional magnetometer is a hybrid device consisting of a piezoelectric plate, a field-annealed amorphous metal ribbon, and a viscous fluid, and it exhibits a low-frequency magnetic field detection level of 8.0 pT/√Hz at 1.0 Hz. The sensor may also be configured as a first- and second-order gradiometer. The device analysis focuses on the influence of the constituent materials on the magnetometer performance, identifying potential noise sources and optimal design parameters. This analysis may be applied to a variety of magnetoelastic amorphous metal sensors, e.g. stress, strain, and torque sensors, and is also useful in research concerning fundamental aspects of magnetoelasticity. Experimental data are presented demonstrating the performance of magnetometers constructed with amorphous metal ribbons exhibiting striped and closure domain structures  相似文献   

5.
6.
A model for lapping of glass   总被引:3,自引:0,他引:3  
  相似文献   

7.
8.
In this paper, a production scheduling problem in glass manufacturing is studied. The production facility consists of multiple identical production lines and each production line includes a number of serially arranged machines. The production is characterized by semi-ordered processing times in each product family, and the last machine in each production line is a bottleneck machine. Significant changeover times are required when products of different families are produced on a production line. The scheduling problem was modeled as a parallel no-delay flowshop scheduling problem (PNDFSP). The PNDFSP combines the parallel machine scheduling problem (PMSP) with the no-delay flowshop scheduling problem (NDFSP). While PMSP and NDFSP have received considerable attention in the literature, PNDFSP has not been well studied. A mixed-integer programming formulation is developed and an efficient heuristic algorithm is proposed. The sequential heuristic algorithm considers simultaneously the line changeover time, no-delay effect, and line utilization in assigning product families to the production lines. The computational results are reported.  相似文献   

9.
Slow strain rate tests were performed on longitudinal tensile specimens of 8090-T81 sheet under permanent immersion conditions in various synthetic environments. Strain rates were in the range 10−7−10−4 s−1. Environmentally assisted cracking is observed in aqueous chloride-carbonate-hydrogencarbonate solutions. Near neutral 3.5% NaCl solution and also 3% NaCl solution with hydrogen peroxide added do not promote stress corrosion cracking with 8090-T81 alloy sheet. The degradation of ductility found with tensile specimens immersed in the latter corrosive environments is caused by localized corrosion independent of stress. Fracture energy data obtained from slow strain rate tests in substitute ocean water reveal a large scatter. Again, the deterioration observed is not related to stress corrosion cracking. Slow strain rate tests were also carried out with longitudinal tensile specimens of 2091-T8X and 2091 CPHK-T8X alloy sheet using an aqueous solution of 3% NaCl + 0.3% H2O2. For the alloy 2091 CPHK-T8X, similar results were obtained to those with 8090-T81, whereas 2091-T8X sheet is prone to environment-induced cracking in the aqueous chloride-peroxide solution.  相似文献   

10.
The fabrication of a phototransistor via the bridging of two prefabricated electrodes with a laterally grown ZnO nanowire is reported. It was found that the fabricated device is an n-channel enhancement-mode phototransistor with a dark carrier concentration of 6.34 × 10(17) cm(-3) when the gate voltage is biased at 5 V. With an incident-light wavelength of 360 nm and a zero gate bias, it was found that the noise equivalent power and normalized detectivity (D*) of the fabricated ZnO phototransistor were 6.67 × 10(-17) W and 1.27 × 10(13) cm Hz(0.5) W(-1), respectively. It was also found that the current in the device can be modulated efficiently by tuning the wavelength of the excitation source.  相似文献   

11.
12.
13.
Substitution of the binary CeO2-HfO2 mixture for SiO2 in the ternary Na2O-SO2-B2O3 system resulted after melting in glassy and/or crystalline materials, depending on subsequent heat treatments. At least one of the phases present was water soluble. Quenching, heat treating, leaching and sintering altered the state of this ceramic. Crystalline forms found were cubic CeO2, monoclinic Ce(BO2)3 and monoclinic HfO2. Specific surface areas of the leached materials were from 120-233 m2 g–1 with a calculated pore radii from 1.3–2.5 nm.  相似文献   

14.
15.
16.
17.
Various open-literature experimental findings pertaining to the ballistic behavior of glass are used to construct a simple, physically based, high strain-rate, high-pressure, large-strain constitutive model for this material. The basic components of the model are constructed in such a way that the model is suitable for direct incorporation into standard commercial transient non-linear dynamics finite-element based software packages like ANSYS/Autodyn [ANSYS/Autodyn version 11.0, User documentation, Century Dynamics Inc. a subsidiary of ANSYS Inc.; 2007.] or ABAQUS/Explicit [ABAQUS version 6.7, User documentation, Dessault systems, 2007.]. To validate the material model, a set of finite element analyses of the Edge-on-Impact (EOI) tests is carried out and the results compared with their experimental counterparts obtained in the recent work of Strassburger et al. [Strassburger E, Patel P, McCauley JW, Kovalchick C, Ramesh KT, Templeton DW. High-speed transmission shadowgraphic and dynamic photoelasticity study of stress wave and impact damage propagation in transparent materials and laminates using the edge-on impact method. In: Proceedings of the twenty-third international symposium on ballistics. Spain: April 2007, and Strassburger E, Patel P, McCauley W, Templeton DW. Visualization of wave propagation and impact damage in a polycrystalline transparent ceramic-AlON. In: Proceedings of the twenty-second international symposium on ballistics. Vancouver, Canada: November 2005.]. Overall, a good agreement is found between the computational and the experimental results pertaining to: (a) the front-shapes and propagation velocities of the longitudinal and transverse waves generated in the target during impact; (b) the front-shapes and propagation velocities of the “coherent-damage” zone (a zone surrounding the projectile/target contact surface which consists of numerous micron- and sub-micron-size cracks); and (c) the formation of “crack centers”, i.e. isolated cracks nucleated ahead of the advancing coherent-damage zone front. Relatively minor discrepancies between the computational and the experimental results are attributed to the effects of damage-promoting target-fixturing induced stresses and cutting/grinding-induced flaws located along the narrow faces of the target and the surrounding regions.  相似文献   

18.
A square-wave excited pulse-height fluxgate circuit is described, using a metallic glass core fluxgate and a minimum amount of active components. High reliability and linearity have been achieved.  相似文献   

19.
Numerical simulations of the water dissolution of a random ternary solid are presented. The three elements represent silica, soluble oxides (alkalis and boron) and quasi-insoluble oxides (Al2O3, ZrO2, Fe2O3,...). The soluble species are dissolved immediately when they are in contact with the solution. Their proportion is kept below the percolation threshold. For the other species, one introduces a model of dissolution-recondensation. It is shown that the dissolution rate constants should be dependent on the bonding environment in order to include surface tension. The condensation fluxes are proportional to the concentration of each species in solution. In the dynamic regime (no recondensation), one observes the congruent dissolution of silica and soluble species, after a short initial phase of selective extraction of the soluble species. The common rate of dissolution decreases with the proportion of insoluble species and increases sharply with that of soluble species. This is mainly due to the formation of a porous hydrated layer whose active surface area increases markedly with the proportion of soluble species. In the static regime (finite solution volume), the equilibrium solubility of silica decreases with the proportion of insoluble species and is practically independent of the proportion of soluble species. The porous hydrated layer is rearranged and almost free of soluble species. The ripening of the surface layer makes it protective and inhibits further extraction of the soluble species. These results are in general agreement with the experimental observations on the dissolution of durable glasses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号