首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
2.
3.
Bringing together compounds of intrinsically different functionality, such as inorganic nanostructures and organic molecules, constitutes a particularly powerful route to creating novel functional devices with synergetic properties found in neither of the constituents. We introduce nanophotonic functional elements combining two classes of materials, semiconductor nanocrystals and dyes, whose physical nature arises as a superposition of the properties of the individual components. The strongly absorbing rod-like nanocrystals focus the incident radiation by photopumping the weakly absorbing dye via energy transfer. The CdSe/CdS nanorods exhibit a large quantum-confined Stark effect on the single-particle level, which enables direct control of the spectral resonance between donor and acceptor required for nanoscopic F?rster-type energy transfer in single nanorod-dye couples. With this far-field manipulation of a near-field phenomenon, the emission from single dye molecules can be controlled electrically. We propose that this effect could lead to the design of single-molecule optoelectronic switches providing building blocks for more complex nanophotonic circuitry.  相似文献   

4.
The development of nanobiotechnological devices requires the ability to build various components with nanometer accuracy. DNA is a well-established nanoscale building block that self assembles due to specific interactions that are encoded in its sequence. Recently, it has become possible to couple proteins to DNA, thereby expanding the capabilities of DNA for use with molecular photonics and bioelectronics. Here, we present the design and characterization of a supramolecular F?rster resonance energy transfer (FRET) system by using a fluorescent protein bound to single-stranded DNA (ssDNA), a fluorophore attached to a second ssDNA molecule, and a complementary strand for hybridizing the two fluorophores together. The FRET efficiency was studied by using both ensemble and single-pair FRET measurements. The distance between the two fluorophores was determined from the single-pair FRET efficiency and could be described by a simple cylindrical model for the DNA. Hence, DNA can be used as a scaffold for positioning fluorescent proteins, as well as traditional fluorophores, with nanometer accuracy and shows great potential for use in the future of nanobiotechnology.  相似文献   

5.
Lee J  Govorov AO  Kotov NA 《Nano letters》2005,5(10):2063-2069
Nanoparticle/nanowire assemblies with a degree of radial organization were prepared around luminescent semiconducting CdTe nanowires using bioconjugation with streptavidin and D-biotin linkers. Red-emitting nanowires (6.62 +/- 1.55 nm diameter, 512 +/- 119 nm length) and green-emitting nanoparticles (3.2 +/- 0.7 nm diameter) were surface-modified with biotin, while orange-emitting nanoparticles (4.1 +/- 1.2 nm diameter) were decorated with streptavidin. CdTe nanocrystals produced two fuzzy layers around the nanowires in which the diameter of CdTe nanoparticles decreased with the distance from the nanowire axis. F?rster resonance energy transfer (FRET) from the outside layer of nanoparticles to the central nanowire was observed for nanowires conjugated with 4.1 nm CdTe. Addition of 3.2 nm CdTe resulted in a red-orange-green optical progression with band gaps of CdTe decreasing toward the axis of the superstructure. In this case, 4-fold luminescence enhancement of the nanowire luminescence was observed and was attributed to multistep FRET. This observation indicated the accumulation of photogenerated excitons in the cascade terminal. A simple model of multiconjugated superstructure with cascade energy transfer is developed and used to describe and understand the experimental data. The experimental data and theoretical model suggest the possibility of utilization of the prepared superstructures with radial symmetry in several classes of optoelectronic devices including nanomaterials for energy collection. They can also be a convenient model object for the investigation of methods of energy funneling in nanoscale assemblies.  相似文献   

6.
Ding Y  Ai HW  Hoi H  Campbell RE 《Analytical chemistry》2011,83(24):9687-9693
As one of the principal cytoplasmic second messengers, the calcium ion (Ca(2+)) is central to a variety of intracellular signal transduction pathways. Accordingly, there is a sustained interest in methods for spatially- and temporally resolved imaging of the concentration of Ca(2+) in live cells using noninvasive methods such as genetically encoded biosensors based on F?rster resonance energy transfer (FRET) between fluorescent proteins (FPs). In recent years, protein-engineering efforts have provided the research community with FRET-based Ca(2+) biosensors that are dramatically improved in terms of enhanced emission ratio change and optimized Ca(2+) affinity for various applications. We now report the development and systematic optimization of a pair of spectrally distinct FRET-based biosensors that enable the simultaneous imaging of Ca(2+) in two compartments of a single cell without substantial spectral crosstalk between emission channels. Furthermore, we demonstrate that these new biosensors can be used in conjunction with previously reported caspase-3 substrates based on the same set of FRET pairs.  相似文献   

7.
《Optical Materials》2011,33(12):1642-1643
Computer simulation of the static donor–acceptor energy transfer in samples containing impurity-doped nanoparticles of identical size and in a bulk crystal was performed, compared, and analyzed. A new double nonexponential decay law for nanoparticles was found and explained by two stages of quenching – that of bulk donors and donors on the surface.  相似文献   

8.
The demonstrated F?rst-type resonance energy transfer (FRET) is demonstrated in quasi-solid type dye-sensitized solar cells between organic fluorescence materials as an energy donor doped in polymeric gel electrolyte and a ruthenium complex as an energy acceptor on the surface of TiO2. Strong spectral overlap of emission/absorption of the energy donor and acceptor is required to obtain high FRET efficiency. The judicious choice of the energy donor allows the enhancement of the light harvesting characters of the energy acceptor (N3) in quasi-solid dye sensitized solar cells which increases the power conversion efficiency by 25% compare to that of a pristine cell. The optimized cell architecture fabricated with the quasi-solid type electrolyte containing fluorescence materials shows a maximum efficiency of 5.08% with a short-circuit current density (J(sc)) of 12.63 mA/cm2, and an open-circuit voltage (V(oc)) of 0.70 V under illumination of simulated solar light (AM 1.5, 100 mW/cm2).  相似文献   

9.
Gan ZX  Xiong SJ  Wu XL  He CY  Shen JC  Chu PK 《Nano letters》2011,11(9):3951-3956
The photoluminescence (PL) characteristics of Mn(2+)-bonded reduced graphene oxide (rGO) are studied in details. The Mn(2+)-bonded rGO is synthesized using MnO(2)-decorated GO as the intermediate products and ideal tunable PL is obtained by enhancing the long-wavelength (450-550 nm) emission. The PL spectra excited by different wavelengths are analyzed to elucidate the mechanism, and the resonant energy transfer between Mn(2+) and sp(2) clusters of the rGO appears to be responsible for the enhanced long-wavelength emission. To examine the effect of Mn(2+) on the long-wavelength emission from the Mn(2+)-bonded rGO, the PL characteristics of Mn(2+)-bonded rGO with smaller Mn concentrations are studied and weaker emission is observed. Our theoretical calculation corroborates the experimental results.  相似文献   

10.
Detection of an analyte via supramolecular host-guest binding and quantum dot (QD)-based fluorescence resonance energy transfer (FRET) signal transduction mechanism is demonstrated. Surface patterns consisting of CdSe/ZnS QDs functionalized at their periphery with β-cyclodextrin (β-CD) were obtained by immobilization of the QDs from solution onto glass substrates patterned with adamantyl-terminated poly(propylene imine) dendrimeric "glue." Subsequent formation of host-guest complexes between vacant β-CD on the QD surface and an adamantyl-functionalized lissamine rhodamine resulting in FRET was confirmed by fluorescence microscopy, spectroscopy, and fluorescence lifetime imaging microscopy (FLIM).  相似文献   

11.
Abstract

In this work, the radiative heat transfer of the ultra‐fine powder insulation Aerosil 380, with dependent scattering and absorption, is investigated theoretically. The radiative transport process is modeled by the two‐flux model and the diffusion approximate method to solve the government equations of transfer. The radiative properties of Aerosil 380 have been determined by the Rayleigh scattering theory because of the small values of particle size parameter. The results show that the dependent effect of scattering will reduce the scattering efficiency; however, the absorption efficiency will be increased due to the dependent absorption. The overall thermal radiation resistance is increased by the dependent effect. A comparison of radiative thermal conductivity has been calculated by the two models. The comparison reveals that the difference is small at a mean temperature of 300°K, but that the difference goes up to about 30 percent at a mean temperature of 400°K.  相似文献   

12.
13.
In this paper, the resonant nonlinear Schrödinger’s equation is studied with four forms of nonlinearity. This equation is also considered with time-dependent coefficients. The simplest equation method is applied to solve the governing equations and then exact 1-soliton solutions are obtained. It is shown that this method provides us with a powerful mathematical tool for solving nonlinear evolution equations with time-dependent coefficients in mathematical physics.  相似文献   

14.
Diffusion processes in porous electrodes are investigated on the basis of mass-transfer equation with memory. The equation is analyzed with the application of the Laplace transform.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 49, No. 3, pp. 481–486, September, 1985.  相似文献   

15.
Measuring the release dynamics of drug molecules after their delivery to the target organelle is critical to improve therapeutic efficacy and reduce side effects. However, it remains challenging to quantitatively monitor subcellular drug release in real time. To address the knowledge gap, a novel gemini fluorescent surfactant capable of forming mitochondria-targeted and redox-responsive nanocarriers is designed. A quantitative Förster resonance energy transfer (FRET) platform is fabricated using this mitochondria-anchored fluorescent nanocarrier as a FRET donor and fluorescent drugs as a FRET acceptor. The FRET platform enables real-time measurement of drug release from organelle-targeted nanocarriers. Moreover, the obtained drug release dynamics can evaluate the duration of drug release at the subcellular level, which established a new quantitative method for organelle-targeted drug release. This quantitative FRET platform can compensate for the absent assessment of the targeted release performances of nanocarriers, offering in-depth understanding of the drug release behaviors at the subcellular targets.  相似文献   

16.
《Optical Materials》2014,36(12):2290-2295
In this paper, we investigate the spectroscopic properties of and energy transfer processes in Er–Tm co-doped bismuth silicate glass. The Judd–Ofelt parameters of Er3+ and Tm3+ are calculated, and the similar values indicate that the local environments of these two kinds of rare earth ions are almost the same. When the samples are pumped at 980 nm, the emission intensity ratio of Tm:3F4  3H6 to Er:4I13/2  4I15/2 increases with increased Er3+ and Tm3+ contents, indicating energy transfer from Er:4I13/2 to Tm:3F4. When the samples are pumped at 800 nm, the emission intensity ratio of Er:4I13/2  4I15/2 to Tm:3H4  3F4 increases with increased Tm2O3 concentration, indicating energy transfer from Tm:3H4 to Er:4I13/2. The rate equations are given to explain the variations. The microscopic and macroscopic energy transfer parameters are calculated, and the values of energy transfer from Er:4I13/2 to Tm:3F4 are found to be higher than those of the other processes. For the Tm singly-doped glass pumped at 800 nm and Er–Tm co-doped glass pumped at 980 nm, the pumping rate needed to realize population reversion is calculated. The result shows that when the Er2O3 doping level is high, pumping the co-doped glass by a 980 nm laser is an effective way of obtaining a low-threshold ∼2 μm gain.  相似文献   

17.
ABSTRACT

This paper describes a high-pulse-energy frequency-doubled ultraviolet dye laser operating at a repetition rate of 500?Hz. The pump source is a laser-diode side-pumped Q-switched Nd:YAG laser with a pulse energy of 29?mJ at 532?nm. A master oscillator power amplifier is employed to amplify the output pulse of the dye laser to 8.1?mJ at 566?nm, and by frequency doubling with BBO crystal a pulse energy of 1.7?mJ at 283?nm is achieved with a pulse width of 8?ns. This is more than four times the largest reported pulse energies generated by other fixed-frequency dye lasers when operating at repetition rates of more than 1?kHz. The conversion efficiency and stability of dye laser are discussed, which show the potential for high-speed laser diagnostics in the fields of combustion and turbulent flow detection.  相似文献   

18.
We present a systematic analysis of the effects, of higher-order dispersion, noninstantaneous nonlinear response, as well as stochastic coefficients in optical fiber. This study is motivated by recent experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber. Analytical expression of pulse amplitude is deduced with the second-order gain nonuniformity and the stimulated-Brillouin scattering-induced third-order as well as fourth-order dispersion effects involved. The influence of stochasticity, as well as the delayed Raman response in the nonconventional sidebands obtained due to the fourth-order dispersion, is considered. We note that the shape of the spectrum, and in particular the relative intensities of the higher order harmonics, is highly sensitive to the initial presence of classical noise, and can therefore be taken as a signature that the MI is seeded by vacuum fluctuations. Some direct simulations to see the evolution of different continuous wave states are reported. These show the formation of modulation instability pulses as well as transitions from lower amplitude continuous wave states to higher amplitude continuous wave states. The present results fit well with recent experimental investigations.  相似文献   

19.
In the present work, electromagnetic field confinement in a subwavelength waveguide structure is obtained using concepts of quantum mechanics and uncertainty principle. Semi-macroscopic considerations of field interaction at the dielectric interfaces are used in this work. The modal field profile in the subwavelength waveguide is obtained by considering the photon as a particle in the waveguide having finite probability of tunneling. Thus, uncertainty of position is assigned to it. The momentum uncertainty is calculated from position uncertainty. Schrödinger wave equation for the photon is written by incorporating position-momentum uncertainty. The equation is solved and the field distribution in the waveguide is obtained. The field distribution and power confinement is compared with conventional waveguide theory. They were found in good agreement with each other.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号