首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate lensfree on-chip sensing within a microfluidic channel using plasmonic nanoapertures that are illuminated by a partially coherent quasimonochromatic source. In this approach, lensfree diffraction patterns of metallic nanoapertures located at the bottom of a microfluidic channel are recorded using an optoelectronic sensor-array. These lensfree diffraction patterns can then be rapidly processed, using phase recovery techniques, to back propagate the optical fields to an arbitrary depth, creating digitally focused complex transmission patterns. Cross correlation of these patterns enables lensfree on-chip sensing of the local refractive index surrounding the near-field of the plasmonic nanoapertures. Based on this principle, we experimentally demonstrate lensfree sensing of refractive index changes as small as ~2×10(-3). This on-chip sensing approach could be quite useful for development of label-free microarray technologies by multiplexing thousands of plasmonic structures on the same microfluidic chip, which can significantly increase the throughput of sensing.  相似文献   

2.
We demonstrate subpixel level color imaging capability on a lensfree incoherent on-chip microscopy platform. By using a nanostructured substrate, the incoherent emission from the object plane is modulated to create a unique far-field diffraction pattern corresponding to each point at the object plane. These lensfree diffraction patterns are then sampled in the far-field using a color sensor-array, where the pixels have three different types of color filters at red, green, and blue (RGB) wavelengths. The recorded RGB diffraction patterns (for each point on the structured substrate) form a basis that can be used to rapidly reconstruct any arbitrary multicolor incoherent object distribution at subpixel resolution, using a compressive sampling algorithm. This lensfree computational imaging platform could be quite useful to create a compact fluorescent on-chip microscope that has color imaging capability.  相似文献   

3.
盛融冰  骆清铭   《高技术通讯》2003,13(12):43-46
光学弱相干层析成像(OCT)技术可以对生物组织高分辨率无损成像。依据获得的样品光学截面数据,再通过三维重建,可以得到生物组织精细结构的再现。在生物组织结构再现的研究中,对于目前常用的生物组织切削照相、X-ray、超声这些方法,OCT作为一种无损高分辨率的3D光学显微技术是一种很好的补充。  相似文献   

4.
Using lensfree holography we demonstrate optofluidic tomography on a chip. A partially coherent light source is utilized to illuminate the objects flowing within a microfluidic channel placed directly on a digital sensor array. The light source is rotated to record lensfree holograms of the objects at different viewing directions. By capturing multiple frames at each illumination angle, pixel super-resolution techniques are utilized to reconstruct high-resolution transmission images at each angle. Tomograms of flowing objects are then computed through filtered back-projection of these reconstructed lensfree images, thereby enabling optical sectioning on-a-chip. The proof-of-concept is demonstrated by lensfree tomographic imaging of C. elegans.  相似文献   

5.
Lorentz transmission electron microscopy (LTEM) has evolved from a qualitative magnetic domain observation technique to a quantitative technique for the determination of the magnetization state of a sample. In this review article, we describe recent developments in techniques and imaging modes, including the use of spherical aberration correction to improve the spatial resolution of LTEM into the single nanometer range, and novel in situ observation modes. We review recent advances in the modeling of the wave optical magnetic phase shift as well as in the area of phase reconstruction by means of the Transport of Intensity Equation (TIE) approach, and discuss vector field electron tomography, which has emerged as a powerful tool for the 3D reconstruction of magnetization configurations. We conclude this review with a brief overview of recent LTEM applications.  相似文献   

6.
Multimodal imaging offers the potential to improve diagnosis and enhance the specificity of photothermal cancer therapy. Toward this goal, gadolinium‐conjugated gold nanoshells are engineered and it is demonstrated that they enhance contrast for magnetic resonance imaging, X‐ray, optical coherence tomography, reflectance confocal microscopy, and two‐photon luminescence. Additionally, these particles effectively convert near‐infrared light to heat, which can be used to ablate cancer cells. Ultimately, these studies demonstrate the potential of gadolinium‐nanoshells for image‐guided photothermal ablation.  相似文献   

7.
A 32-channel time-resolved imaging device for medical optical tomography has been employed to evaluate a scheme for imaging the human female breast. The fully automated instrument and the reconstruction procedure have been tested on a conical phantom with tissue-equivalent optical properties. The imaging protocol has been designed to obviate compression of the breast and the need for coupling fluids. Images are generated from experimental data with an iterative reconstruction algorithm that employs a three-dimensional (3D) finite-element diffusion-based forward model. Embedded regions with twice the background optical properties are revealed in separate 3D absorption and scattering images of the phantom. The implications for 3D time-resolved optical tomography of the breast are discussed.  相似文献   

8.
Localisation microscopy overcomes the diffraction limit by measuring the position of individual molecules to obtain optical images with a lateral resolution better than 30 nm. Single molecule localisation microscopy was originally demonstrated only in two dimensions but has recently been extended to three dimensions. Here we develop a new approach to three-dimensional (3D) localisation microscopy by engineering of the point-spread function (PSF) of a fluorescence microscope. By introducing a linear phase gradient between the two halves of the objective pupil plane the PSF is split into two lateral lobes whose relative position depends on defocus. Calculations suggested that the phase gradient resulting from the very small tolerances in parallelism of conventional slides made from float glass would be sufficient to generate a two-lobed PSF. We demonstrate that insertion of a suitably chosen microscope slide that occupies half the objective aperture combined with a novel fast fitting algorithm for 3D localisation estimation allows nanoscopic imaging with detail resolution well below 100 nm in all three dimensions (standard deviations of 20, 16, and 42 nm in x, y, and z directions, respectively). The utility of the approach is shown by imaging the complex 3D distribution of microtubules in cardiac muscle cells that were stained with conventional near infrared fluorochromes. The straightforward optical setup, minimal hardware requirements and large axial localisation range make this approach suitable for many nanoscopic imaging applications.   相似文献   

9.
A first attempt to investigate samples affected by alkali-silica reaction (ASR) by synchrotron X-ray microtomography has been made. The setup available at the SYRMEP beamline, at the third generation synchrotron Elettra (Trieste, Italy), allowed collecting phase-contrast enhanced images, with a detectability approaching that of optical microscopy (a few microns). In this study, mortar cylinders were prepared and immersed in a 1-M NaOH solution at 80 °C for 14 days to enhance the ASR. The weathered samples were studied using the traditional 2D techniques such as optical microscopy and scanning electron microscopy as well as using the 3D micro-CT. Over the aged samples, the 3D imaging allows the ASR weathering to be studied, showing the reactive aggregate progressive dissolution with subsequent deposition of gel and microcracks development. This technique has proven to be a valuable, non-destructive, method which allows the rendering of the microstructural features in specimen affected by ASR.  相似文献   

10.
Near-infrared (NIR) optical tomography provide estimates of the internal distribution of optical absorption and transport scattering from boundary measurement of light propagation within biological tissue. Although this is a truly three-dimensional (3D) imaging problem, most research to date has concentrated on two-dimensional modeling and image reconstruction. More recently, 3D imaging algorithms are demonstrating better estimation of the light propagation within the imaging region and are providing the basis of more accurate image construction algorithms. As 3D methods emerge, it will become increasingly important to evaluate their resolution, contrast, and localization of optical property heterogeneity. We present a concise study of 3D reconstructed resolution of a small, low-contrast, absorbing and scattering anomaly as it is placed in different locations within a cylindrical phantom. The object is an 8-mm-diameter cylinder, which represents a typical small target that needs to be resolved in NIR mammographic imaging. The best resolution and contrast is observed when the object is located near the periphery of the imaging region (12-22 mm from the edge) and is also positioned within the multiple measurement planes, with the most accurate results seen for the scatter image when the anomaly is at 17 mm from the edge. Furthermore, the accuracy of quantitative imaging is increased to almost 100% of the target values when a priori information regarding the internal structure of imaging domain is utilized.  相似文献   

11.
Scanning‐probe microscopy (SPM) is the method of choice for high‐resolution imaging of surfaces in science and industry. However, SPM systems are still considered as rather complex and costly scientific instruments, realized by delicate combinations of microscopic cantilevers, nanoscopic tips, and macroscopic read‐out units that require high‐precision alignment prior to use. This study introduces a concept of ultra‐compact SPM engines that combine cantilevers, tips, and a wide variety of actuator and read‐out elements into one single monolithic structure. The devices are fabricated by multiphoton laser lithography as it is a particularly flexible and accurate additive nanofabrication technique. The resulting SPM engines are operated by optical actuation and read‐out without manual alignment of individual components. The viability of the concept is demonstrated in a series of experiments that range from atomic‐force microscopy engines offering atomic step height resolution, their operation in fluids, and to 3D printed scanning near‐field optical microscopy. The presented approach is amenable to wafer‐scale mass fabrication of SPM arrays and capable to unlock a wide range of novel applications that are inaccessible by current approaches to build SPMs.  相似文献   

12.
Matoba O  Tajahuerce E  Javidi B 《Applied optics》2001,40(20):3318-3325
A novel system for recognizing three-dimensional (3D) objects by use of multiple perspectives imaging is proposed. A 3D object under incoherent illumination is projected into an array of two-dimensional (2D) elemental images by use of a microlens array. Each elemental 2D image corresponds to a different perspective of the 3D object. Multiple perspectives imaging based on integral photography has been used for 3D display. In this way, the whole set of 2D elemental images records 3D information about the input object. After an optical incoherent-to-coherent conversion, an optical processor is employed to perform the correlation between the input and the reference 3D objects. Use of micro-optics allows us to process the 3D information in real time and with a compact optical system. To the best of our knowledge this 3D processor is the first to apply the principle of integral photography to 3D image recognition. We present experimental results obtained with both a digital and an optical implementation of the system. We also show that the system can recognize a slightly out-of-plane rotated 3D object.  相似文献   

13.
Three-dimensional (3D) X-ray imaging methods have advanced tremendously during recent years. Traditional tomography uses absorption as the contrast mechanism, but for many purposes its sensitivity is limited. The introduction of diffraction, small-angle scattering, refraction, and phase contrasts has increased the sensitivity, especially in materials composed of light elements (for example, carbon and oxygen). X-ray spectroscopy, in principle, offers information on element composition and chemical environment. However, its application in 3D imaging over macroscopic length scales has not been possible for light elements. Here we introduce a new hard-X-ray spectroscopic tomography with a unique sensitivity to light elements. In this method, dark-field section images are obtained directly without any reconstruction algorithms. We apply the method to acquire the 3D structure and map the chemical bonding in selected samples relevant to materials science. The novel aspects make this technique a powerful new imaging tool, with an inherent access to the molecular-level chemical environment.  相似文献   

14.
Innovations in nanofabrication have expedited advances in hollow‐structured nanomaterials with increasing complexity, which, at the same time, set challenges for the precise determination of their intriguing and complicated 3D configurations. Conventional transmission electron microscopy (TEM) analysis typically yields 2D projections of 3D objects, which in some cases is insufficient to reflect the genuine architectures of these 3D nano‐objects, providing misleading information. Advanced analytical approaches such as focused ion beam (FIB) and ultramicrotomy enable the real slicing of nanomaterials, realizing the direct observation of inner structures but with limited spatial discrimination. Electron tomography (ET) is a technique that retrieves spatial information from a series of 2D electron projections at different tilt angles. As a unique and powerful tool kit, this technique has experienced great advances in its application in materials science, resolving the intricate 3D nanostructures. Here, the exceptional capability of the ET technique in the structural, chemical, and quantitative analysis of hollow‐structured nanomaterials is discussed in detail. The distinct information derived from ET analysis is highlighted and compared with conventional analysis methods. Along with the advances in microscopy technologies, the state‐of‐the‐art ET technique offers great opportunities and promise in the development of hollow nanomaterials.  相似文献   

15.
Yuan Z  Jiang H 《Applied optics》2007,46(14):2757-2768
What we believe to be a novel 3D diffuse optical tomography scheme is developed to reconstruct images of both absorption and scattering coefficients of finger joint systems. Compared with our previous reconstruction method, the improved 3D algorithm employs both modified Newton methods and an enhanced initial value optimization scheme to recover the optical properties of highly heterogeneous media. The developed approach is tested using simulated, phantom, and in vivo measurement data. The recovered results suggest that the improved approach is able to provide quantitatively better images than our previous algorithm for optical tomography reconstruction.  相似文献   

16.
A simple approach is developed to identify the layer number of 2D MoS? sheets. By using an optical imaging method combined with image analysis software, a high-contrast image of the MoS? sheets can be extracted from the red (R) channel of the color optical microscopy image. The value of the intensity difference in the grayscale image of the R channel between MoS? sheets (1-3 layers) and the SiO? substrate can be used to identify the layer number of the sheet.  相似文献   

17.
Photoacoustic and photothermal effects can be important as driven mechanisms for micro-(opto)-electro-mechanical structures (MOEMS). A new approach for a producing a compact, lightweight, highly sensitive detector is provided by MOEMS technology, which is based on the elastic bending of microstructure generated by absorption of modulated optical power. The electronic and thermal elastic vibrations (the electronic deformation and thermoelastic mechanisms of elastic wave generation) in a semiconductor rectangular simply supported plate (3D geometry), photogenerated by a focused and intensity-modulated laser beam, were studied. The theoretical model for the elastic displacements space and frequency distribution by using the Green function method was given. The amplitude of the elastic bending in the rectangular plate was calculated and analyzed, including the thermalization and surface and volume recombination heat sources. The theoretical results were compared with the experimental data. These investigations are important for many practical experimental situations (atomic force microscopy, thermal microscopy, thermoelastic microscopy, etc.) and sensors and actuators.  相似文献   

18.
In this study, a hybrid approach coupling hyperspectral near infrared imaging with a progressive finite element method is proposed for characterization of the elastic and failure response of composites with non-uniform variations of the wrinkles profile through the thickness and across the structure dimensions. In this approach, hyperspectral near infrared spectroscopy is used to create a 3D profile of the surface resin pockets with the capability of measuring resin thickness from approximately 125 to 2500 μm. These resin pockets are directly correlated to underlying ply level wrinkling as confirmed by optical microscopy. The 3D mapped resin plane obtained from the hyperspectral imaging is used to morph a ply-by-ply finite element model of a carbon-fiber/epoxy resin laminated plate using a progressive damage failure methodology. The results show the capability of the hybrid method to predict the structural response in laminated composites containing spatially distributed and non-uniform ply-level wrinkling.  相似文献   

19.
This review focuses on modern nonlinear optical microscopy (NLOM) methods that are increasingly being used in the field of tissue engineering (TE) to image tissue non-invasively and without labelling in depths unreached by conventional microscopy techniques. With NLOM techniques, biomaterial matrices, cultured cells and their produced extracellular matrix may be visualized with high resolution. After introducing classical imaging methodologies such as µCT, MRI, optical coherence tomography, electron microscopy and conventional microscopy two-photon fluorescence (2-PF) and second harmonic generation (SHG) imaging are described in detail (principle, power, limitations) together with their most widely used TE applications. Besides our own cell encapsulation, cell printing and collagen scaffolding systems and their NLOM imaging the most current research articles will be reviewed. These cover imaging of autofluorescence and fluorescence-labelled tissue and biomaterial structures, SHG-based quantitative morphometry of collagen I and other proteins, imaging of vascularization and online monitoring techniques in TE. Finally, some insight is given into state-of-the-art three-photon-based imaging methods (e.g. coherent anti-Stokes Raman scattering, third harmonic generation). This review provides an overview of the powerful and constantly evolving field of multiphoton microscopy, which is a powerful and indispensable tool for the development of artificial tissues in regenerative medicine and which is likely to gain importance also as a means for general diagnostic medical imaging.  相似文献   

20.
Lee Y  Bard AJ 《Analytical chemistry》2002,74(15):3626-3633
A technique that combines scanning electrochemical microscopy (SECM) and optical microscopy (OM) was implemented with a new probe tip. The tip for scanning electrochemicaVoptical microscopy (SECM/OM) was constructed by insulating a typical gold-coated near-field scanning optical microscopy tip using electrophoretic anodic paint. Once fabricated, the tip was characterized by steady-state cyclic voltammetry, as well as optical and electrochemical approach experiments. This tip generated a stable steady-state current and well-defined SECM approach curves for both conductive and insulating substrates. Durable tips whose geometry was a ring with < 1 microm as outer ring radius could be consistently fabricated. Simultaneous electrochemical and optical images of an interdigitated array electrode were obtained with a resolution on the micrometer scale, demonstrating good performance of the tip as both an optical and an electrochemical probe for imaging microstructures. The SECM feedback current measurements were successfully employed to determine tip-substrate distances for imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号