首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rolling direction (RD) and the transverse direction (TD) samples were obtained from an as-rolled ZK60 magnesium alloy sheet with strong anisotropy of initial texture and their mechanical properties were tested at various deformation temperatures. Meanwhile, the microstructure and texture of these samples after fracture were investigated. Results revealed that a higher flow stress along the RD than that along the TD at room temperature were ascribed to the strong anisotropy of transitional texture, and this texture effect was remarkably weakened with the increase of deformation temperature. Deformation structure was dominant at 100 °C, and was replaced by dynamic recrystallization structure when the deformation temperature increased to 200 °C and 300 °C. The texture presented a strong texture (transitional texture in the RD sample and basal texture in the TD sample) at 100 °C, but its intensity visibly decreased and texture components became more disperse at 200 °C and 300 °C. These microstructure and texture results were employed in conjunction with calculated results to argue that raising deformation temperature could increase the activity of non-basal slip by tailoring the relative critical resolved shear stress of each deformation mode and finally result in low texture effect on mechanical anisotropy.  相似文献   

2.
Abstract

Commercial purity Ti sheets (0.88 mm thick) were deep drawn by a complex working process at two temperatures using a hot die and a cool punch. The working temperature ranged from 25 to 400°C. Generally, the limiting drawing ratios (LDRs) along both the rolling direction (RD) and transverse direction (TD) increased with increasing operating temperature, while the optimal blank holding force decreased with temperature. The LDR(RD) is larger than the LDR(TD) at all temperatures in the range tested and the difference (ΔLDR) is largest at 200°C or higher. The deep drawn cups failed at the cup wall near the die throat along the TD. The thickness strain along the TD was consistently smaller than that along the RD. The anisotropy index δ 011¯1 increased significantly at 100°C and the largest δ hkil values were found in δ 0002 along the RD and δ 112¯0 along the TD. The reorientation bands that appeared when drawn at 25°C are a result of work hardening, but the microshear bands that occurred in the 400°C specimen are a result of large deformation. The difference in microstructures along the TD and RD may explain the anisotropy in deep drawing properties.  相似文献   

3.
The plastic deformation and recrystallization behavior of the commercial magnesium alloys AZ31 and ME21 were analyzed in a wide temperature range. Using the conventional hyperbolic sine equation the flow stress dependence on temperature and strain rate was modeled. The activation energy for plastic deformation significantly increased with increasing temperature and delivered values above 180 kJmol?1 for both alloys in the very high-temperature regime (400–550 °C). At lower temperatures (250–400 °C) the activation energy of the AZ31 alloy was approximately 108 kJmol?1 considering the peak stress as well as 120 kJmol?1 considering the flow stress at a strain of 0.5. The stress exponent varied in a range between 4.5 and 6.5. During the high-temperature compression tests a partial recrystallized microstructure was formed, which was distinctly different in AZ31 compared to ME21 due to the different onset of dynamic recrystallization (DRX) mechanisms.  相似文献   

4.
Strain-induced abnormal grain growth was observed along the gage length during high-temperature uniaxial tensile testing of rolled Mg–Al–Zn (AZ31) sheet. Effective strain and strain rates in biaxial forming of AZ31 sheets also affected the nature of grain growth in the formed sheet. For the uniaxial testing done at 400 °C and a strain rate of 10?1 s?1, abnormal grain growth was prevalent in the gage sections that experienced true strain values between 0.2 and 1.0. Biaxial forming of AZ31 at 5 × 10?2 s?1 and 400 °C also exhibited abnormal grain growth at the cross sections which experienced a true strain of 1.7. Uniaxially tested sample at 400 °C and a strain rate of 10?3 s?1, however, showed no abnormal grain growth in the gage sections which experienced true local strain values ranging from 1.0 to 2.3. The normalized flow stress versus temperature and grain size compensated strain rate plot showed that the deformation kinetics of the current AZ31 alloy was similar to that reported in the literature for AZ31 alloys. Orientation image microscopy (OIM) was used to study the texture evolution, grain size, and grain boundary misorientation during uniaxial and biaxial forming. Influence of deformation parameters, namely strain rate, strain, and temperature on grain growth and refinement were discussed with the help of OIM results.  相似文献   

5.
Mg alloy AZ31B plates were processed by hot rolling with different thickness reductions per pass and pre-vertical compression followed by super-high reduction hot rolling (PVCR), respectively. Microstructure evolution, rolling formability variation and mechanical responses were investigated. As reduction per pass increased, the number of shear bands deflecting toward rolling direction increased, resulting in easy crack initiation in and around the bands. With increasing reduction per pass up to 80%, twinning and twinning-induced dynamic recrystallization (DRX) dominated the deformation of the edge material at 350?°C, resulting in local recrystallization with coarse grains and further largest edge-crack degree. Pre-induced {101¯2} tensile twins by pre-vertical compression (PVC) increased number density of nucleation sites for dynamic recrystallization during the subsequent severe rolling, which enhanced the dominant role of continuous dynamic recrystallization. Designed PVCR-b was proved to be a relatively effective method to improve rolling formability of rolled Mg alloy AZ31B plates. With this method, mean grain size of AZ31B plate was significantly refined from ~600?mm to ~14.1?mm and more homogeneous grain size distribution along transverse direction (TD) was achieved. In addition, basal texture intensity was greatly weakened. As a result, tensile anisotropy was distinctly decreased and fracture elongation increased dramatically.  相似文献   

6.
Magnesium alloys have been widely used in recent years as lightweight structural materials in the manufacturing of automobiles, airplanes, and portable computers. Magnesium alloys have extremely low density (as low as 1738 kg · m?3) and high rigidity, which makes them suitable for such applications. In this study, the thermal conductivity of two different magnesium alloys made by twin-roll casting was investigated using the laser-flash technique and differential scanning calorimetry for thermal diffusivity and specific heat capacity measurements, respectively. The thermal diffusivity of the magnesium alloys, AZ31 and AZ61, was measured over the temperature range from ?125 °C to 400 °C. The alloys AZ31 and AZ61 are composed of magnesium, aluminum, and zinc. The thermal conductivity gradually increased with temperature. The densities of AZ31 and AZ61 were 1754 kg · m?3 and 1777 kg · m?3, respectively. The thermal conductivity of AZ31 was about 25 % higher than that of AZ61, and this is attributed to the amount of precipitation.  相似文献   

7.
Superplastic behavior of a solution treated and friction stir processed (FSP) AZ91C alloy is studied. These studies are conducted in the temperature range of 300–375 °C and strain rates (SRs) in the range of 1 × 10?4–3 × 10?3 s?1. Microstructural stability of the FSP alloy is also studied in comparison to the AZ31, AZ61, and AZ91 alloys processed by various routes. High SR sensitivity in the range of 0.33–0.39 and grain size stability till 350 °C is observed for the FSP alloy. The FSP AZ91C alloy showed better thermal stability in comparison to AZ31 and AZ61 alloys. Kinetics of superplastic deformation of the FSP alloy is found to be slower as compared to AZ31 and AZ61 alloys processed by various routes, which is due to the presence of significant amount of second phase precipitates, such as, β-Mg17(Al,Zn)12, Mg2Si, and Al8Mn5 in the FSP alloy. However, these precipitates contributed for better thermal stability of the microstructure of FSP AZ91C alloy.  相似文献   

8.
Stretch formability of Mn-free AZ31 Mg alloys rolled at 618 and 723 K was investigated at room temperature. The specimen rolled at 723 K showed superior stretch formability to that of the specimen rolled at 618 K. The (0002) plane texture of the specimen rolled at 723 K exhibited a low texture intensity compared with that of the specimen rolled at 618 K. It is suggested that the modification of basal texture by the high temperature rolling contributes to activation of basal slips, resulting in an enhancement of the stretch formability. Besides, it is suggested that coarse grain size of a Mn-free AZ31 alloy seems to enhance a stretch formability, because twins become easily generated during tensile loading.  相似文献   

9.
The effect of initial texture on the anisotropic properties of AZ31 Mg alloys was investigated on the basis of microstructure evolution after compression tests and Lankford parameter (r-value) experiments at various temperatures. Two kinds of sheets were used: one is the cast-and-rolled sheet, and the other is the strip-cast sheet. Compression tests were conducted up to a strain of 0.3 at temperatures of 200-400 °C, and tensile tests were performed to obtain the r-value at various temperatures (25-450 °C). The results showed that, at all test temperatures, the average r-value of the RD plane were greater than those of the ND and TD planes in the cast-and-rolled material. When comparing the average r-value of the RD plane, the cast-and-rolled material revealed much higher values than those of strip-cast material. It was observed that the cross-sectional shape of RD compressive specimens (the compression axis was parallel to the rolling direction) of cast-and-rolled materials changed from an initial circular shape to an ellipsoidal shape due to the plastic anisotropy. Compression processes of specimens were simulated using a finite element method where the Hill's anisotropic yield criterion was adopted. The simulated results were in a good agreement with experimental data.  相似文献   

10.
目的 制备双峰织构类型的AZ31镁合金板,以改善板材微观组织和弱化基面织构,研究微观组织对力学性能各向异性的影响规律,以提高镁合金板材的成形性能。方法 通过弯曲限宽矫直技术对0°、30°和60°轧向切样的板材进行热加工以预制拉伸孪晶,获得双峰织构类型的AZ31镁合金板材,通过EBSD获取板材的微观组织。对RD、45°和TD方向的原始板材进行室温单向拉伸实验,获得板材的工程应力-应变曲线及力学性能参数,并计算r值(塑性应变比)与n值(应变硬化指数)。结果 弯曲限宽矫直技术可诱发大量拉伸孪晶形成ED偏转织构,将偏转织构与基面织构共存的板材称为双峰织构类型AZ31镁合金板材。拉伸孪晶的出现显著细化了晶粒,弱化了基面织构强度,使板材的屈服强度下降,极大提升了材料塑性。其中30°轧向切样的板材ND面塑性力学性能各向异性的改善效果最好,其r值最小、n值最大。结论 双峰织构类型能够弱化AZ31镁合金板材基面的织构强度,提高材料塑性。拉伸孪晶含量越高,板材的强度与塑性越好,力学性能各向异性的改善效果也越显著。  相似文献   

11.
Hydro Mechanical Deep‐Drawing and High Pressure Sheet Metal Forming as Forming Technologies for the Production of Complex Parts Made of Magnesium Sheet Metal AZ31B‐0 Semi ‐ finished sheet ‐ metal products made of magnesium alloys such as AZ31B are known as better deformable at temperatures in the range of 175 °C ‐ 240 °C. By means of hydroforming technologies, as there are hydro mechanical deep‐drawing and high pressure sheet metal forming, the influence of different forming parameters on the forming results has been investigated. A more complex experimental geometry was deformed applying forming temperatures of 175 °C, 200 °C, 225 °C and 240 °C and accordingly adjusted forces of the blank holder. Concerning the applied forming ‐ methods and experimental parameters the forming results have been evaluated and compared regarding the decrease of sheet thickness and the development of small radii. For some experimental parts, which have been deformed by means of high pressure sheet metal forming at temperatures of 175 °C and 225 °C, supplementary investigations have been carried out in order to determine the evolution of characteristic surface values in dependence on the forming operation. On the basis of these results practical recommendations for the limits of application of aforementioned forming technologies for AZ31B‐0 magnesium sheet metal are given.  相似文献   

12.
This study used very high strain rate uniaxial compression testing to analyze the microstructure and texture evolution during high speed rolling of as-cast AZ31B alloy. A split Hopkinson pressure bar equipped with induction radiation furnace was used to attain a strain rate of 1200 s?1 in the temperature range of 25–350 °C and the result was compared with low strain rate (0.01 s?1) behavior. As well, high speed rolling at 500 m min?1 was employed to successfully roll AZ31 alloy in one pass with 71 % reduction at 200 °C. During rolling, the mill was suddenly stopped and the sheet was withdrawn from rolling gap and the microstructure and texture evolution was observed. Grain boundary misorientation analysis shows that coincident site lattice boundaries related to contraction twins and secondary twins are more numerous in the samples deformed at high strain rate. With increasing strain for both rolling and compression at 200 °C, the splitting of basal poles was observed, indicating the activation of more contraction twins and secondary twins compared to low strain rate deformation. Also, the recrystallized volume fraction increased significantly with strain rate, probably due to increasing the twin-induced recrystallization fraction. On annealing of the samples compressed at 200 °C, secondary twins and their vicinity were observed to be the preferential sites for nucleation and it seems that rapid recrystallization on secondary twins contributes to the basal texture weakening. Therefore, an increasing number of such twins increase the texture weakening.  相似文献   

13.
Abstract

The aim of this paper is to study the influence of the initial microstructure of several Mg–Al alloys on their superplastic formability and on their post-forming microstructure and mechanical properties. Various thermomechanical processing routes, such as annealing, conventional rolling, severe rolling and cross rolling, were used in order to fabricate AZ31 and AZ61 alloys with different grain sizes. These materials were then blow formed into a hat shaped die. It was found that the processing route has only a small effect in the formability of Mg–Al alloys or on the post-forming microstructures and properties due to rapid dynamic grain growth taking place at the forming temperatures. Nevertheless, good formability is achieved as a result of the simultaneous operation of grain boundary sliding and crystallographic slip during forming.  相似文献   

14.
Abstract

The hot working behaviour of magnesium AZ (e.g. AZ31; Al: 3%, Zn: 1%) alloys and their associated crystallographic texture evolution is reviewed. Under hot working conditions, the stress–strain curves show flow softening at all the temperatures and strain rates indicating dynamic recrystallisation (DRX) is predominant. The mean size of the recrystallised grains in all the alloys decreases as the value of Zener–Hollomon parameter Z increases. The hot working range of the alloys dwell between 200 and 500°C and the strain rates between 10?3 and 5 s?1. The hot working of AZ series alloy shows discontinuous DRX as the main mechanism. Equal channel angular processing shows continuous DRX. The constitutive equation development shows a linear relationship between the stress and the Z parameter. The activation energy for the alloys ranges from 112 to 169 kJ mol?1 and Z values range from 10 to 10 s?1. Textural examinations show basal texture as the predominant orientation.  相似文献   

15.
Temperature effect on the oxidation behaviour of NiCrAl and NiCrAl-Y alloys has been studied in the present work. Thermogravimetric analysis has been carried out at 900, 1000, 1100 °C for 210 h in order to investigate oxidation kinetics. Phase constitution of surface scales was determined by using X-ray diffraction, and microstructure was examined by using scanning electron microscope with energy dispersive spectra. Oxidation resistance of NiCrAl alloy has been found to be improved substantially by adding rare earth element yttrium at all the three experimental temperatures. But Y-rich inclusions result in higher initial oxidation rates as a result of oxidation of the inclusions.  相似文献   

16.
Mg–Gd–Y–Zr alloys are among recently developed Mg alloys having superior mechanical properties at elevated temperatures. Dynamic recrystallization (DRX) and rare earth-rich particles play important roles in enhancing the high-temperature strength of these alloys. Accordingly, the microstructural evolution of a fine-grained extruded Mg–5Gd–4Y–0.4Zr alloy was investigated after hot shear deformation in the temperature range of 350–450 °C using the shear punch testing (SPT) method. The results reveal the occurrence of partial dynamic recrystallization at the grain boundaries at 350 °C while the fraction of DRX grains increases with increasing deformation temperature. A fully recrystallized microstructure was achieved after SPT at 450 °C. The Gd-rich and Y-rich cuboid particles, having typical sizes in the range of ~50 nm to ~3 μm, show excellent stability and compatibility after hot shear deformation, and these particles enhance the high-temperature strength during hot deformation at elevated temperatures. The textural evolution, examined using electron backscattered diffraction, revealed a non-fibrous basal DRX texture after SPT which is different from the conventional deformation texture.  相似文献   

17.
This paper describes and compares the superplastic behaviour and microstructural evolution of twin roll cast AZ91 and WE43 rolled sheet alloys. Tests were carried out in uniaxial tension on both alloys across a range of temperatures (300 °C–525 °C) and strain rates (1?10‐4 s‐1–1?10‐1 s‐1). In the case of WE43 gas bulge testing was employed at 400 °C and 0.6 MPa to offer a better analogy to superplastic forming than uniaxial tensile testing. Elongations of over 400 % were observed within WE43 when tested at 450 °C and 1?10‐3 s‐1 strain rate, and over 200 % within AZ91 when tested at 350 °C and 1?10‐3 s‐1 strain rate. A peak cone height of 41 mm was achieved with WE43 at a temperature of 400 °C and pressure of 0.6 MPa. Electron back scattered detection technique was employed to analyse the microstructural evolution of the two alloys during the forming process. Both WE43 and AZ91 were observed to undergo dynamic recrystallization during elevated temperature tensile testing and failed at low strain rates mainly by means of coalescence of cavitation, in the case of AZ91 at high strain rates cracking of Al12Mg17 intermetallic particles was the dominating failure mechanism. Both alloys were seen to achieve good levels of superplastic ductility over 200 % elongation, which would be industrially useful in niche vehicle and aerospace manufacturing.  相似文献   

18.
19.
Abstract

AZ31 Mg alloy samples were processed by equal channel angular pressing (ECAP) at 220°C for four passes. An average grain size of ~1·9 μm with reasonable homogeneity was obtained. The ECAP process imparted large plastic shear strains and strong deformation textures to the material. Subsequent annealing of the equal channel angular pressed samples produced interesting mechanical behaviours. While yield strength increased and ductility decreased immediately after undergoing ECAP, annealing at temperatures <250°C restored ductility significantly at a small decrease in of yield strength. Annealing at temperatures >250°C reduced yield strength without additional improvement in ductility. It is believed that the combination of stress relief via dislocation elimination, refined microstructure and the retention of a strong ECAP texture at low annealing temperatures enhance ductility. High temperature annealing breaks down the ECAP texture resulting in no further improvement in ductility. The results show that the mechanical properties of the alloy can be positively influenced by annealing after ECAP to achieve a combination of strength and ductility.  相似文献   

20.
Wrought magnesium alloys are rarely used due to their poor formability which is caused by strong textures created during processing. Addition of rare earth (RE) elements including Y, Ce, La, Gd and Nd weakens these strong basal textures and significantly improves formability. Developing a mechanistic understanding of this effect is critical in leading alloy design towards a new class of highly formable magnesium alloys. This fall in texture intensity occurs during recrystallisation and only requires very low solute RE additions, 0·01 at.-% in the magnesium–Ce case. These additions retard dynamic recrystallisation and increase non-basal slip; however, a full understanding of the RE effect has yet to be obtained, with a variety of mechanisms proposed. Recent research in these areas is critically reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号