首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhen Zhou 《Ergonomics》2014,57(5):714-732
Frequency weightings for predicting vibration discomfort assume the same frequency-dependence at all magnitudes of vibration, whereas biodynamic studies show that the frequency-dependence of the human body depends on the magnitude of vibration. This study investigated how the frequency-dependence of vibration discomfort depends on the acceleration and the force at the subject–seat interface. Using magnitude estimation, 20 males and 20 females judged their discomfort caused by sinusoidal vertical acceleration at 13 frequencies (1–16 Hz) at magnitudes from 0.1 to 4.0 ms? 2 r.m.s. The frequency-dependence of their equivalent comfort contours depended on the magnitude of vibration, but was less dependent on the magnitude of dynamic force than the magnitude of acceleration, consistent with the biodynamic non-linearity of the body causing some of the magnitude-dependence of equivalent comfort contours. There were significant associations between the biodynamic responses and subjective responses at all frequencies in the range 1–16 Hz.

Practitioner Summary: Vertical seat vibration causes discomfort in many forms of transport. This study provides the frequency-dependence of vibration discomfort over a range of vibration magnitudes and shows how the frequency weightings in the current standards can be improved.  相似文献   

2.
《Ergonomics》2012,55(5):833-855
Operation of vibrating power hand tools can result in excessive grip force, which may increase the risk of cumulative trauma disorders in the upper extremities. An experiment was performed to study grip force exerted by 14 subjects operating a simulated hand tool vibrating at 9.8 m/s2 and 49 m/s2 acceleration magnitudes, at 40 Hz and 160 Hz frequencies, with vibration delivered in three orthogonal directions, and with 1.5kg and 3.0kg load weights. Average grip force increased from 25.3 N without vibration to 32.1 N (27%) for vibration at 40 Hz, and to 27.1N (7%) for vibration at 160 Hz. Average grip force also increased from 27.4 N at 9.8 m/s2 acceleration to 31.8 N (16%) at 49m/s2. Significant interactions between acceleration x frequency, and frequency x direction were also found. The largest average grip force increase was from 25.3N without vibration to 35.8N (42%) for 40 Hz and 49 m/s2 vibration. The magnitude of this increase was of the same order as for a two-fold increase in load weight, where average grip force increased from 22.5N to 35.0N (56%). A second experiment studied hand flexor and extensor muscle responses using electromyography for five subjects holding a handle vibrating at 8 m/s2 using ISO weighted acceleration, with frequencies of 20 Hz, 40 Hz, 80 Hz and 160 Hz, and grip forces of 5%, 10% and 15% of maximum voluntary contraction. Muscle responses were greatest at frequencies where grip force was affected, indicating that the tonic vibration reflex was the likely cause of increased grip exertions.  相似文献   

3.
《Ergonomics》2012,55(5):488-496
The extent to which a glove modifies the risks from hand-transmitted vibration is quantified in ISO 10819:1996 by a measure of glove transmissibility determined with one vibration magnitude, one contact force with a handle and only three subjects. This study was designed to investigate systematically the vibration transmissibility of four ‘anti-vibration’ gloves over the frequency range 16–1600 Hz with 12 subjects, at six magnitudes of vibration (0.25–8.0 ms?2 r.m.s.) and with six push forces (5 N to 80 N). The four gloves showed different transmissibility characteristics that were not greatly affected by vibration magnitude but highly dependent on push force. In all conditions, the variability in transmissibility between subjects was as great as the variability between gloves. It is concluded that a standardised test of glove dynamic performance should include a wide range of hands and a range of forces representative of those occurring in work with vibratory tools.

Statement of Relevance: The transmission of vibration through anti-vibration gloves is highly dependent on the push force between the hand and a handle and also highly dependent on the hand that is inside the glove. The influence of neither factor is well reflected in ISO 10819:1996, the current standard for anti-vibration gloves.  相似文献   

4.
Yu Huang  Penglin Zhang 《Ergonomics》2019,62(3):420-430
Current standards assume the same frequency weightings for discomfort at all magnitudes of vibration, whereas biodynamic and psychological studies show that the frequency-dependence of objective and subjective responses of the human body depends on the magnitude of vibration. This study investigated the discomfort of seated human body caused by vertical whole-body vibration over the frequency range 2–100?Hz at relatively high magnitudes from 1.0 to 2.5?ms?2 r.m.s. Twenty-eight subjects (15 males and 13 females) judged the discomfort using the absolute magnitude estimation method. The rate of growth of discomfort with increasing vibration magnitude was highly dependent on the frequency, so the shapes of the equivalent comfort contours depended on the magnitude of vibration and no single frequency weighting would be appropriate for all magnitudes. The equivalent comfort contours indicated that the standards and previous relevant studies underestimated the vibration discomfort at frequencies greater than about 30?Hz.

Practitioner Summary: The discomfort caused by vertical vibration at relatively high frequencies can be severe, particularly at relatively great magnitudes in transport. This study provides the frequency-dependence of vibration discomfort at 2–100?Hz, and shows how the frequency weightings in the current standards can be improved at relatively high frequencies.  相似文献   


5.
《Ergonomics》2012,55(8):705-719
The effects on discomfort of the frequency and direction of the translational vibration of a footrest and flat firm backrest have been studied in two experiments. At frequencies in the range 2.5-63 Hz, the first experiment determined the levels of fore-and-aft, lateral and vertical vibration of the feet of seated subjects which caused them discomfort equivalent to that from 0.8 m/s2 r.m.s. 10 Hz vertical vibration of a firm flat seat. The levels of fore-and-aft, lateral and vertical vibration at the back of a seat which were equivalent to 0.8 m/s2 r.m.s. 10 Hz vertical seat vibration were determined in the second experiment. The vibration of the feet or back occurred without simultaneous vibration at the seat.

Individual and group equivalent comfort contours are presented. It is concluded that the data provide a useful initial indication of the relative contribution of foot and back vibration to discomfort. Equivalent comfort contours for foot vibration were similar for all three directions of vibration. The contours for vibration of the back show a high sensitivity to fore-and-aft vibration. The results obtained from two additional studies show that vibration from a backrest and other variations in seating conditions can influence subject comfort.  相似文献   

6.
Basri B  Griffin MJ 《Ergonomics》2011,54(12):1214-1227
This study determined how backrest inclination and the frequency of vibration influence the perception and discomfort of vibration applied parallel to the back (vertical vibration when sitting upright, horizontal vibration when recumbent). Subjects experienced backrest vibration at frequencies in the range 2.5 to 25 Hz at vibration magnitudes up to 24 dB above threshold. Absolute thresholds, equivalent comfort contours, and the principal locations for feeling vibration were determined with four backrest inclinations: 0° (upright), 30°, 60° and 90° (recumbent). With all backrest inclinations, acceleration thresholds and equivalent comfort contours were similar and increased with increasing frequency at 6 dB per octave (i.e. velocity constant). It is concluded that backrest inclination has little effect on the frequency dependence of thresholds and equivalent comfort contours for vibration applied along the back, and that the W (d) frequency weighting in current standards is appropriate for evaluating z-axis vibration of the back at all backrest inclinations. STATEMENT OF RELEVANCE: To minimise the vibration discomfort of seated people, it is necessary to understand how discomfort varies with backrest inclination. It is concluded that the vibration on backrests can be measured using a pad between the backrest and the back, so that it reclines with the backrest, and the measured vibration evaluated without correcting for the backrest inclination.  相似文献   

7.
The effects of vibration-reducing gloves on finger vibration   总被引:1,自引:0,他引:1  
Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed.  相似文献   

8.
Laszlo HE  Griffin MJ 《Ergonomics》2011,54(5):488-496
The extent to which a glove modifies the risks from hand-transmitted vibration is quantified in ISO 10819:1996 by a measure of glove transmissibility determined with one vibration magnitude, one contact force with a handle and only three subjects. This study was designed to investigate systematically the vibration transmissibility of four 'anti-vibration' gloves over the frequency range 16-1600 Hz with 12 subjects, at six magnitudes of vibration (0.25-8.0 ms(-2) r.m.s.) and with six push forces (5 N to 80 N). The four gloves showed different transmissibility characteristics that were not greatly affected by vibration magnitude but highly dependent on push force. In all conditions, the variability in transmissibility between subjects was as great as the variability between gloves. It is concluded that a standardised test of glove dynamic performance should include a wide range of hands and a range of forces representative of those occurring in work with vibratory tools. STATEMENT OF RELEVANCE: The transmission of vibration through anti-vibration gloves is highly dependent on the push force between the hand and a handle and also highly dependent on the hand that is inside the glove. The influence of neither factor is well reflected in ISO 10819:1996, the current standard for anti-vibration gloves.  相似文献   

9.
Basri B  Griffin MJ 《Ergonomics》2012,55(8):909-922
This study determined how backrest inclination and the frequency and magnitude of vertical seat vibration influence vibration discomfort. Subjects experienced vertical seat vibration at frequencies in the range 2.5-25 Hz at vibration magnitudes in the range 0.016-2.0 ms(-2) r.m.s. Equivalent comfort contours were determined with five backrest conditions: no backrest, and with a stationary backrest inclined at 0° (upright), 30°, 60° and 90°. Within all conditions, the frequency of greatest sensitivity to acceleration decreased with increasing vibration magnitude. Compared to an upright backrest, around the main resonance of the body, the vibration magnitudes required to cause similar discomfort were 100% greater with 60° and 90° backrest inclinations and 50% greater with a 30° backrest inclination. It is concluded that no single frequency weighting provides an accurate prediction of the discomfort caused by vertical seat vibration at all magnitudes and with all backrest conditions. PRACTITIONER SUMMARY: Vertical seat vibration is a main cause of vibration discomfort for drivers and passengers of road vehicles. A frequency weighting has been standardised for the evaluation of vertical seat vibration when sitting upright but it was not known whether this weighting is suitable for the reclined sitting postures often adopted during travel.  相似文献   

10.
《Ergonomics》2012,55(12):1214-1227
This study determined how backrest inclination and the frequency of vibration influence the perception and discomfort of vibration applied parallel to the back (vertical vibration when sitting upright, horizontal vibration when recumbent). Subjects experienced backrest vibration at frequencies in the range 2.5 to 25 Hz at vibration magnitudes up to 24 dB above threshold. Absolute thresholds, equivalent comfort contours, and the principal locations for feeling vibration were determined with four backrest inclinations: 0° (upright), 30°, 60° and 90° (recumbent). With all backrest inclinations, acceleration thresholds and equivalent comfort contours were similar and increased with increasing frequency at 6 dB per octave (i.e. velocity constant). It is concluded that backrest inclination has little effect on the frequency dependence of thresholds and equivalent comfort contours for vibration applied along the back, and that the W d frequency weighting in current standards is appropriate for evaluating z-axis vibration of the back at all backrest inclinations.

Statement of Relevance: To minimise the vibration discomfort of seated people, it is necessary to understand how discomfort varies with backrest inclination. It is concluded that the vibration on backrests can be measured using a pad between the backrest and the back, so that it reclines with the backrest, and the measured vibration evaluated without correcting for the backrest inclination.  相似文献   

11.
《Ergonomics》2012,55(7):631-650
This second paper in a series of studies of the discomfort produced by multi-axis vibration is concerned with rotational seat vibration. The effects of level, frequency and direction of the roll, pitch and yaw vibration of a firm flat seat have been studied in two experiments. At octave centre frequencies in the range 1-31.5 Hz the first experiment determined the levels of roll, pitch and yaw seat vibration which caused discomfort equivalent to 0-5 and l.25m/s2r.m.s. 10 Hz vertical seat vibration. In the second experiment, comfort contours equivalent to 0.8 m/s2 r.m.s. 10 Hz vertical seat vibration were determined from 18 males and 18 females at preferred third-octave centre frequencies from 1 to 31.5 Hz. In all cases the axis of rotation passed through the centre of the seat surface. There was no vibration of the feet and no backrest.

It was concluded that the shape of equivalent comfort contours need not normally depend on vibration, level. Both individual and group equivalent comfort contours are presented. Although there were significant correlations between subject size and subject relative discomfort it is not thought that these correlations have much practical application. In all three axes the median contours of vibration acceleration increase in proportion to vibration frequency. Sensitivity is greatest for roll vibration and least for yaw vibration of the seat.  相似文献   

12.
《Ergonomics》2012,55(7):603-630
A series of studies of discomfort caused by multi-axis vibration at the seat, feet and back of seated persons is described. This first paper reports on studies with translational seat vibration. Two experiments concerned with the effects of level, frequency and direction of the translational vibration of a firm flat seat are reported.

At octave centre frequencies from 1 to 63 Hz the first experiment determined the levels of fore-and-aft, lateral and vertical seat vibration which caused discomfort equivalent to 0.5 and l.25m/s2r.m.s. 10 Hz vertical seat vibration. In the second experiment, comfort contours equivalent to 0.8m/s2r.m.s. 10 Hz vertical seat vibration and subject transmissibilities were determined from 18 males and 18 females at preferred third-octave centre frequencies from 1 to 100 Hz. In both studies the feet of subjects were not vibrated and there was no backrest.

It was concluded that the shapes of equivalent comfort contours need not normally depend on vibration level. The forms of both individual and group equivalent comfort contours and seat-to-head transmissibilities are presented. Significant correlations were found between subject characteristics (size and transmissibility) and subject relative discomfort. The males and females produced similar equivalent comfort contours.

Information on the computerized application of the method of constant stimuli which was developed for the series of experiments is presented together with a consideration of alternative methods of determining the central tendency of the data. A method of assessing the effect of vibrator distortion on judgements of equivalent discomfort is also defined.  相似文献   

13.
The transmission of vibration from hand-held tools via work gloves and into the operators' hands can be affected by several factors such as glove material properties, tool vibration conditions, grip force, and temperature. The primary aim of this study is to develop a new methodology to measure and evaluate vibration transmissibility for a human finger in contact with different materials, whilst measuring and controlling the grip force. The study presented here used a new bespoke lab-based apparatus for assessing vibration transmissibility that includes a generic handle instrumented for vibration and grip force measurements. The handle is freely suspended and can be excited at a range of real-world vibration conditions whilst being gripped by a human subject. The study conducted a frequency response function (FRF) of the handle using an instrumented hammer to ensure that the handle system was resonance free at the important frequency range for glove research, as outlined in ISO 10819: 1996: 2013, and also investigated how glove material properties and design affect the tool vibration transmission into the index finger (Almagirby et al. 2015). The FRF results obtained at each of six positions shows that the dynamic system of the handle has three resonance frequencies in the low frequency range (2, 11 and 17 Hz) and indicated that no resonances were displayed up to a frequency of about 550 Hz. No significant vibration attenuation was shown at frequencies lower than 150 Hz. The two materials cut from the gloves that were labelled as anti-vibration gloves (AV) indicated resonance at frequencies of 150 and 160 Hz. However, the non-glove material that did not meet the requirements for AV gloves showed resonance at 250 Hz. The attenuation for the three materials was found at frequencies of 315 Hz and 400 Hz. The level and position of the true resonance frequencies were found to vary between samples and individual subjects.  相似文献   

14.
《Ergonomics》2012,55(11):1545-1559
Abstract

Standards assume vibration discomfort depends on the frequency and direction of whole-body vibration, with the same weightings for frequency and direction at all magnitudes. This study determined equivalent comfort contours from 1.0 to 10?Hz in each of three directions (fore-and-aft, lateral, vertical) at magnitudes in the range 0.1 to 3.5?ms?2?r.m.s. Twenty-four subjects sat on a rigid flat seat with and without a beanbag, altering the pressure distribution on the seat but not the transmission of vibration. The rate of growth of vibration discomfort with increasing magnitude of vibration differed between the directions of vibration and varied with the frequency of vibration. The frequency-dependence and direction-dependence of discomfort, therefore, depended on the magnitude of vibration. The beanbag did not affect the frequency-dependence or direction-dependence of vibration discomfort. It is concluded that different weightings for the frequency and direction of vibration are required for low and high magnitude vibration.

Practitioner summary: When evaluating whole-body vibration to predict vibration discomfort, the weightings appropriate to different frequencies and different directions of vibration should depend on the magnitude of vibration. This is overlooked in all current methods of evaluating the severity of whole-body vibration.  相似文献   

15.
This study conducted two series of experiments to investigate the relationships between hand coupling force and biodynamic responses of the hand–arm system. In the first experiment, the vibration transmissibility on the system was measured as a continuous function of grip force while the hand was subjected to discrete sinusoidal excitations. In the second experiment, the biodynamic responses of the system subjected to a broadband random vibration were measured under five levels of grip forces and a combination of grip and push forces. This study found that the transmissibility at each given frequency increased with the increase in the grip force before reaching a maximum level. The transmissibility then tended to plateau or decrease when the grip force was further increased. This threshold force increased with an increase in the vibration frequency. These relationships remained the same for both types of vibrations. The implications of the experimental results are discussed.

Practitioner Summary: Shocks and vibrations transmitted to the hand–arm system may cause injuries and disorders of the system. How to take hand coupling force into account in the risk assessment of vibration exposure remains an important issue for further studies. This study is designed and conducted to help resolve this issue.  相似文献   


16.

Background and objective

This study was designed to establish the validity and reliability of a new device that measures bilateral shoulder and elbow range of motion (ROM) and grip force performance in vivo. A further aim was to investigate the control of inter-limb grip force coordination during isometric force-maintenance tasks. Validity of the ROM and grip force measurements was examined using a validated clinical goniometer and standard weights.

Subjects

Twenty-one healthy adults (six female, 15 male; mean ± standard deviation age = 23.05 ± 3.51) were recruited for this study.

Design

All subjects were asked to perform tests to evaluate the validity and reliability of ROM, grip force maximum voluntary contraction (MVC) and coordination control measurements.

Results

The ROM and grip force measurements were linearly correlated with criterion standards. For reliability testing, all of the intraclass correlation coefficient values were >0.99. The inter-limb grip force coordination control task showed that the force modulation timing during dominant-to-non-dominant hand transition was longer than the non-dominant-to-dominant hand transition (p < 0.05).

Conclusions

These results demonstrate that this device is valid and reliable when used to measure shoulder and elbow ROM and grip force of both hands. Isometric force-maintenance tasks also indicated changes in inter-limb grip force control.  相似文献   

17.
Although much research has been devoted to the determination of equivalent comfort contours for human response to whole-body vibration little consideration has been given to the source of the feelings that give rise to such comfort contours. This paper shows that for vertical vibration there is a distinct difference in the locations of discomfort on the body at different frequencies and that the locations are not much affected by the vibration level. For horizontal motions, feelings of discomfort predominated in the lower abdomen and buttocks irrespective of vibration frequency or direction. A semantic scaling technique indicates the maximum sensitivity to vertical vibration acceleration in the 4 to 16 Hz range, but for both fore-and aft and lateral vibration there is a decrease in sensitivity with increasing frequency above 2Hz.  相似文献   

18.
The extent to which a seat can provide useful attenuation of vehicle vibration depends on three factors: the characteristics of the vehicle motion, the vibration transmissibility of the seat, and the sensitivity of the body to vibration. The ‘seat effective amplitude transmissibility’ (i.e., SEAT value) reflects how these three factors vary with the frequency and the direction of vibration so as to predict the vibration isolation efficiency of a seat. The SEAT value is mostly used to select seat cushions or seat suspensions based on the transmission of vertical vibration to the principal supporting surface of a seat. This study investigated the accuracy of SEAT values in predicting how seats with backrests influence the discomfort caused by multiple-input vibration. Twelve male subjects participated in a four-part experiment to determine equivalent comfort contours, the relative discomfort, the location of discomfort, and seat transmissibility with three foam seats and a rigid reference seat at 14 frequencies of vibration in the range 1–20 Hz at magnitudes of vibration from 0.2 to 1.6 ms−2 r.m.s. The ‘measured seat dynamic discomfort’ (MSDD) was calculated for each foam seat from the ratio of the vibration acceleration required to cause similar discomfort with the foam seat and with the rigid reference seat. Using the frequency weightings in current standards, the SEAT values of each seat were calculated from the ratio of overall ride values with the foam seat to the overall ride values with the rigid reference seat, and compared to the corresponding MSDD at each frequency. The SEAT values provided good predictions of how the foam seats increased vibration discomfort at frequencies around the 4-Hz resonance but reduced vibration discomfort at frequencies greater than about 6.3 Hz, with discrepancies explained by a known limitation of the frequency weightings.  相似文献   

19.
A five-degrees-of-freedom (DOF) bio-mechanical model of the hand-arm system is developed to study the vibration transmissibility characteristics of the human hand-arm. The model parameters are identified from the characteristics of vibration transmitted to the hand, forearm and upper arm, measured in the 10–200 Hz frequency range under a constant 25.0 N grip force. A concept of an energy flow divider is proposed to reduce the flow of vibration energy into the hand. The coupled hand-arm-divider is modeled as a six-DOF dynamical system and the response characteristics are evaluated for handle excitations caused by a palm-grip orbital sander. The response characteristics of the coupled hand-arm-divider model are compared to those of the hand-arm model to demonstrate the potential performance benefits of the proposed energy flow divider. The hand-transmitted vibration is further assessed using the overall weighted acceleration response, and it is concluded that the proposed energy flow divider can reduce the magnitude of hand-transmitted vibration considerably.  相似文献   

20.
Owing to the strong dependence of the health risks associated with vibration exposure of the human hand and arm on hand force, a laboratory study was conducted to develop a methodology for measurement of the contact force at the tool handle–hand interface, and to identify the relationship between the contact force and the hand grip and push forces. A simulated tool handle fixture was realized in the laboratory to measure the grip and push forces using compression/extension force sensors integrated within the handle and a force plate, respectively. The contact force was derived through integration of the interface pressure over the contact area. These were measured using a capacitive pressure-sensing grid. The measurements were performed with 10 male subjects and three circular cross-section handles of different sizes under different combinations of grip and push forces. The hand–handle interface pressure data were analyzed to derive the contact force, as functions of the constant magnitudes of the grip and push forces, and the handle size. The results suggest that the hand–handle contact force is strongly dependent upon not only the grip and push forces but also the handle diameter. The contact force for a given handle size can be expressed as a linear combination of grip and push forces, where the contribution of the grip force is considerably larger than that of the push force. The results further suggest that a linear relation can characterize the dependence of the contact force on the handle diameter. The validity of the proposed relationship is demonstrated by evaluating the magnitudes of errors between the estimated contact forces with the measured data for the range of handle diameters, and grip and push forces considered in the study.

Relevance to industry

The methodology proposed in this study can be applied to measure the effective hand–handle contact force at workplaces for assessing the health risks associated with exposure to hand-transmitted vibration exposure and hand–wrist cumulative trauma. The relationship proposed in the study could be effectively applied for estimating the hand–handle contact force from known grip and push forces that are conveniently and directly measurable in laboratory studies involving vibration analyses of the human hand, power tools and relevant vibration attenuation devices. It is expected to be most useful in field applications, where it could provide an estimate of the range of magnitudes of the hand-grip force applied to the handle of an actual tool, which is quite difficult and expensive to measure. The relationship is also expected to contribute to the on-going standardization efforts for defining a correction factor to account for the effects of hand force on the vibration transmission and hand injuries.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号