首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Journal of dairy science》1988,71(12):3425-3436
Prediction equations were determined to estimate daily milk yield from 306 to 395 d in milk for forecasting herd milk sales from Holstein cows in lactation >305 d. Data were test day milk weights for 65,322 primiparous and 119,220 pluriparous lactations of > 305 d from the Southern US. A forecast model was developed using same lactation 305 d milk yield (in classes of 500 kg increments) that gave similar predicted daily yields as models utilizing last sample milk weight information. This model has the advantage of early forecasting of later milk using projected 305-d yields.Reduced forecast models ignoring days pregnant, yield class, or both accounted for 95, 68, and 59%, and 91, 67, and 56% as much variation in daily milk as the full model for the primiparous and pluriparous cows. Percentage of 305-d milk yielded in mo 11, 12, and 13, depending on 305-d yield class, ranged from 7.1 to 7.0%, 6.2 to 6.0%, and 5.4 to 5.0%, and 5.4 to 5.0%, 4.3 to 3.9%, and 3.3 to 3.0% for first parity and pluriparous cows calving in winter and 125 d open. Cows not calving in winter or with more than 125 d open yielded more milk in extended lactation. These percentages are larger than generally assumed in studies of days open, thus indicating that cost of days open may have been overestimated.  相似文献   

2.
In the United States, lactation yields are calculated using best prediction (BP), a method in which test-day (TD) data are compared with breed- and parity-specific herd lactation curves that do not account for differences among regions of the country or seasons of calving. Complete data from 538,090 lactations of 348,123 Holstein cows with lactation lengths between 250 and 500 d, records made in a single herd, at least 5 reported TD, and twice-daily milking were extracted from the national dairy database and used to construct regional and seasonal lactation curves. Herds were assigned to 1 of 7 regions of the country, individual lactations were assigned to 3-mo seasons of calving, and lactation curves for milk, fat, and protein yields were estimated by parity group for regions, seasons, and seasons within regions. Multiplicative pre-adjustment factors (MF) also were computed. The resulting lactation curves and MF were tested on a validation data set of 891,806 lactations from 400,000 Holstein cows sampled at random from the national dairy database. Mature-equivalent milk, fat, and protein yields were calculated using the standard and adjusted curves and MF, and differences between 305-d mature-equivalent yields were tested for significance. Yields calculated using 50-d intervals from 50 to 250 d in milk (DIM) and using all TD to 500 DIM allowed comparisons of predictions for records in progress (RIP). Differences in mature-equivalent milk ranged from 0 to 51 kg and were slightly larger for first-parity than for later parity cows. Milk and components yields did not differ significantly in any case. Correlations of yields for 50-d intervals with those using all TD were similar across analyses. Yields for RIP were slightly more accurate when adjusted for regional and seasonal differences.  相似文献   

3.
The objectives of this study were to investigate the association of body weight (BW) at first calving (BWFC) and maturity rate (MR; BWFC as a percentage of mature BW) with first-lactation 305-d milk yield (FLMY), milk yield (MY) in the 24 mo following first calving (24MMY), herd life, and BW change (BWC) through the first month of lactation in Holstein heifers. We retrieved daily milk production records and daily BW records from AfiFarm (S. A. E. Afikim, Kibbutz Afikim, Israel). The data set included daily records for 1,110 Holstein cows from The Pennsylvania State University (n = 435,002 records) and 1,229 Holstein cows from University of Florida (n = 462,013 records) that calved from 2001 to 2016. Body weight at first calving was defined as mean BW from 5 to 10 d in milk of the first lactation, whereas BWC represented change from BWFC to average BW from 30 to 40 d in milk. First-lactation 305-d MY and 24MMY were analyzed with a linear model that included effects of farm-year-season of calving, age at calving, and quintiles of BWFC, MR, or BWC. Body weight change was analyzed with the same model to determine associations with BWFC. Survival analysis was performed to estimate the effect of BWFC on survival. Heifers in the top 60% of BWFC had significantly higher FLMY (10,041 to 10,084 kg) than lighter heifers (9,683 to 9,917 kg), but there was wide variation in every quintile, and no relationship of BWFC and FLMY existed within the top 60%. Relationships between BWFC and 24MMY were not significant. Heifers with higher BWFC or MR lost significantly more BW in early lactation. Although BWFC and MR were significant predictors of FLMY, they accounted for <3% of variation in FLMY or 24MMY, suggesting that BWFC and MR are not primary contributors to variation in MY. Compared with the lightest heifers, the heaviest heifers were 49% more likely to be culled at a given time. These data indicated that, among heifers managed similarly, heavier heifers produced more milk in first lactation than lighter heifers but lost more BW, faced a higher risk of being culled, and did not produce more milk in the long term. Based on our data, heifers that reach between 73 and 77% MR at first calving can produce more milk in their first lactation without sacrificing long-term MY and herd life.  相似文献   

4.
A total of 850 cows distributed among 13 commercial Holstein herds were involved in this study to compare the effects of 2 different dry period (DP) management strategies on milk and component yields as well as body condition score (BCS) over complete lactations. Within each herd and every 2 mo, cows were assigned to a short (35 d dry; SDP) or conventional (60 d dry; CDP) DP management based on previous lactation 305-d milk yield, predicted calving interval, and parity: primiparous (n = 414) and multiparous (n = 436). Cows assigned to CDP were fed a far-off dry cow ration from dry-off until 21 d prepartum, and were then switched to a precalving ration. Cows assigned to SDP were fed the precalving ration throughout their DP. Rations were different across herds, but the late-lactation, precalving, and early lactation rations were identical for both treatment groups within each herd. Additional milk was obtained at the end of lactation from cows assigned to SDP due to the extended lactation. Average daily milk yield in the following lactation was not different between treatments for third- or greater-lactation cows, but was significantly decreased in second-lactation SDP cows. However, when expressed as energy-corrected milk, this difference was not significant. Although lower for primiparous than multiparous cows, body weight and BCS were not affected by DP management strategy. Milk production and BCS responses to treatments varied among herds. Results from the present study suggest that a short DP management strategy could be more appropriate for today's dairy cows, although not suitable for all cows or all herds.  相似文献   

5.
Estimates of genetic correlations were .17 between first lactation milk yield and concurrent calving interval, .10 between second lactation milk yield and first calving interval, and .82 between first and second milk yields. Corresponding phenotypic correlations were .27, .16, and .58. Heritability estimates were .27 and .25 for first and second lactations and .15 for calving interval. Estimates were averages of two samples of 15 New York State herds averaging 144 AI-sired Holstein cows and 30 sires. Milk yields were 305-d, mature equivalent. Calving interval was days between first and second freshening. First milk records without a second freshening were included. Multiple-trait animal model included separate herd-year-season effects for first and second milk yields and calving interval. Numerator relationships among animals within herd, except for daughter-dam relationships, were included. The REML with the expectation-maximization algorithm was used to estimate (co)variance matrices among genetic values and environmental effects for the three traits. Results indicate a need to adjust milk records for the phenotypic effects of current and previous calving interval. The genetic association, however, between fertility and milk yield appears small. Genetic improvement of 450 kg of milk yield may result in 2 added d to first calving interval.  相似文献   

6.
Survival analysis methodologies were used to study herd life in Canadian Holstein cows. Herd life was defined as true herd life or the length of time between first calving and censoring. True herd life adjusted for 305-d milk production was defined as functional herd life. Lifetime record (censored or completed) were from 331,147 Holstein cows registered in the Programme d'Analyse des Troupeaux Laitiers du Québec (PATLQ) that calved for the first time between March 1, 1981 and March 31, 1995. The Weibull (proportional hazards) model used to analyze true herd life and functional herd life contained a Weibull baseline hazard function and the time-dependent effects of year of first calving, lactation number by stage of lactation, annual change in herd size and herd-year (random), and the time-independent effects of the milk recording option (supervised or not) and age at first calving. The model for functional herd life included also the time-dependent effect of herd-year-parity class of 305-d milk production. Genetic differences between sires with regard to the hazard function of their daughters was clearly demonstrated. The hazard rate followed a different pattern in later lactations, particularly in the first 240 d in milk. Older age at first calving was found to be associated with higher risks of culling. Changes in herd size had a small impact on the hazard function of animals. The hazard decreased as production of the cow increased. Heritability in the log scale was 0.09 for true herd life and 0.08 for functional herd life, but when heritability was expressed on the original scale, the estimates for the two traits were 0.19 and 0.15, respectively. The difference in the median survival between a bull with an estimated transmitting ability of 0.6 and another bull with an estimated transmitting ability of 1.3 was 690 d or 1.7 lactations. Rank correlations between the official estimated transmitting abilities for true herd life and functional herd life and those obtained in this study were 0.62 and 0.66, respectively.  相似文献   

7.
Nine mathematical models were compared for their ability to predict daily milk yields (n = 294,986) in standard 305-d and extended lactations of dairy cows of Costa Rica. Lactations were classified by parity (first and later), lactation length (9 to 10, 11 to 12, 13 to 14, 15 to 16, and 16 to 17 mo), and calving to conception interval (1 to 2, 3 to 4, 5 to 6, 7 to 8, and 9 to 10 mo). Of the nine models, the diphasic model and lactation persistency model resulted in the best goodness of fit as measured by adjusted coefficient of determination, residual standard deviation, and Durbin-Watson coefficient. All other models showed less accuracy and positively correlated residuals. In extended lactations, models were also fitted using only test-day records before 305 d, which resulted in a different ranking. The diphasic model showed the best prediction of milk yield in standard and extended lactations. We concluded that the diphasic model provided accurate estimates of milk yield for standard and extended lactations. Interpretation of parameters deserves further attention because of the large variation observed. As expected, the calving to conception interval was found to have a negative effect on milk yield for cows with a standard lactation length. In extended lactations, these negative effects of pregnancy on milk yield were not observed.  相似文献   

8.
《Journal of dairy science》2022,105(9):7525-7538
We fit the Wood's lactation model to an extensive database of test-day milk production records of US Holstein cows to obtain lactation-specific parameter estimates and investigated the effects of temporal, spatial, and management factors on lactation curve parameters and 305-d milk yield. Our approach included 2 steps as follows: (1) individual animal-parity parameter estimation with nonlinear least-squares optimization of the Wood's lactation curve parameters, and (2) mixed-effects model analysis of 8,595,413 sets of parameter estimates from individual lactation curves. Further, we conducted an analysis that included all parities and a separate analysis for first lactation heifers. Results showed that parity had the most significant effect on the scale (parameter a), the rate of decay (parameter c), and the 305-d milk yield. The month of calving had the largest effect on the rate of increase (parameter b) for models fit with data from all lactations. The calving month had the most significant effect on all lactation curve parameters for first lactation models. However, age at first calving, year, and milking frequency accounted for a higher proportion of the variance than month for first lactation 305-d milk yield. All parameter estimates and 305-d milk yield increased as parity increased; parameter a and 305-d milk yield rose, and parameters b and c decreased as year and milking frequency increased. Calving month estimates parameters a, b, c, and 305-d milk yield were the lowest values for September, May, June, and July, respectively. The results also indicated the random effects of herd and cow improved model fit. Lactation curve parameter estimates from the mixed-model analysis of individual lactation curve fits describe well US Holstein lactation curves according to temporal, spatial, and management factors.  相似文献   

9.
《Journal of dairy science》2021,104(9):10382-10398
New Zealand's Fertility Breeding Value (FertBV) is reported as the percentage of a sire's daughters that calve in the first 42 d of the seasonal calving period and is an estimate of genetic merit for fertility for dairy cattle. Reproductive physiology, milk production, and changes in body weight and body condition score of 2 groups of cows divergent in FertBV (+5.0%: POS; −5.1%: NEG) were characterized during their first 2 lactations. Cows grazed fresh pasture and were managed in a seasonal calving system; they were bred by artificial insemination on observed estrus for the entire breeding period (98 d in lactation 1 and 76 d in lactation 2). During lactation 1, all animals were primiparous and were randomly allocated to 1 of 2 herds, ensuring each herd was balanced for FertBV and expected calving date. During lactation 2, cows that became pregnant during lactation 1 were managed as 1 herd. Cows not inseminated in the first 42 d of the breeding season were examined for the presence of a corpus luteum and treated with an anestrus program. On average, the interval from calving to ovulation was 19 d longer in lactation 1 and 10 d longer in lactation 2 for NEG FertBV cows. The percent of cows submitted for artificial insemination after 21 d (i.e., submission rate) was 38 and 25 percentage points greater in the POS FertBV cows during lactations 1 and 2, respectively. Pregnancy rate from 42 d of breeding was 33 and 30 percentage points greater, respectively. There was no effect of FertBV on vaginal discharge score postcalving; however, POS FertBV cows had a 50% lower risk of having subclinical endometritis (polymorphonuclear leukocytes >7%) 42 d postcalving. Interactions between FertBV and month relative to calving identified that NEG FertBV cows were fatter (greater body condition score) in the month before calving, but thinner between 3 and 5 mo postcalving. There was no effect of FertBV on lactation length, estimated 270-d milk yields, or daily milk, fat, or protein yields, and only small effects on milk fat and protein percentage across the lactations. In summary, the POS FertBV cows had superior uterine health, a shorter calving to ovulation interval, a greater submission rate, and a greater pregnancy rate earlier in the breeding season when compared with the NEG FertBV cohort. Based on these results, these may be useful phenotypes to include in genetic selection indices.  相似文献   

10.
Sixty-eight Holstein heifers, paired on milk production potential and season of birth, were randomly assigned within pairs to a control or treatment group to evaluate the effect of raising replacement heifers on a prophylactic anthelmintic regimen. The anthelmintic, thiabendazole (6.6 g/100 kg body weight), was administered orally as a paste at 2.5, 3.5, 6, 9, and 14 mo of age and at parturition. The control group received no thiabendazole. Fecal samples were collected from both groups at the time of thiabendazole treatment. Days to first service were 457.1 and 457.8 for the control and treatment groups. There were no differences in services per conception or days to first calving. Nematode eggs per 5 g of feces were similar at 2.5 mo (.6 and .8), 3.5 mo (38.6 and 22.4), 6 mo (40.2 and 43.1), 9 mo (39.0 and 22.4), 14 mo (55.2 and 22.4), or parturition (16.5 and .4). There were no differences in body weight changes over the first 18 mo of age. Subsequent first lactations were similar (9422 and 8710 kg 305-d mature equivalent, for twice daily milking) as was actual milk production for the first 120 d of lactation. Under these environmental conditions and apparently low parasitism in this herd, thiabendazole did not substantially influence nematode egg count and had no effects on body weight gains or milk production.  相似文献   

11.
Twenty-four Holstein heifers were fed grain and alfalfa hay ad libitum for accelerated growth from 91 kg body weight until verification of pregnancy (Treatment A). Grain then was deleted until near time of freshening. They were bred at second estrus if they weighed at least 305 kg. An additional 24 heifers were fed a conventional roughage ration to allow a growth rate corresponding to the Beltsville growth standard and were bred when 15 to 16 mo of age (Treatment S). Observations were of growth rate, reproductive and productive performance, and length of herd life under normal culling.The A heifers gained 38% faster to 364 kg body weight (1.1 versus .8 kg/day). Average weights and ages were first estrus 275 kg, 8.3 mo (A), 288 kg, 10.2 mo (S); first breeding 319 kg, 9.6 mo (A), 392 kg, 16.8 mo (S); and first calving 560 kg, 19.7 mo (A), 26.9 mo (S). Differences in body dimensions at given weights were negligible. Treatment effects on dystocia were inconclusive. Lactation number, numbers of animals milked 100+ days, and average milk yields (kg) were: 1st lactation 24, 4436 (A), 22, 5415 (S); 2nd–22, 5295 (A), 18, 5903 (S); 3rd–12, 6278 (A), 10, 6407 (S); 4th–6, 7181 (A), 5, 5269 (S). Mean accumulative milk yields per animal to 36 mo of age were 7173 (A) and 4853 kg (S). Accelerated growth and early breeding did not affect herd life.  相似文献   

12.
Information regarding health, management, and housing from birth to first calving was collected for 1,029 Swedish Reds, 991 Swedish Holsteins, and 40 heifers of crossbreed or other breeds on bimonthly farm visits made by 3 project veterinarians to 107 dairy herds in southwest Sweden. Additional data were obtained from the official milk- and health-recording program. Milk production at first test day after calving [energy-corrected milk (ECM)1] and during the first 305 d of lactation (ECM305), respectively, were analyzed by 2-level (animal; herd) linear regression, after initial screening by univariable analyses of 67 potentially important predictors. The ECM1 ranged from 7.9 to 48.0 (median = 27.1) kg, and ECM305 ranged from 3,764 to 12,136 (median = 8,006) kg. In the final models, factors associated with ECM1 or ECM305 or both were age at first calving, body condition score at first service, breed, calfhood diarrhea, calving season, composite somatic cell count at first test day, daily weight gain from weaning to first service, housing system after calving, and increase in concentrate fed around calving. Higher age at calving was associated with higher production. Production also increased with higher daily weight gains from weaning to first service. Swedish Holsteins produced more than Swedish Reds, cows calving in May to September produced more than those calving during other months, and cows housed in short stalls after calving produced more than those in cubicles. Body condition scores ≥3.2 at first service were associated with lower ECM305 than scores ≤2.9. Animals that contracted mild diarrhea during their first 3 mo of life had lower ECM305 than animals without diarrhea, whereas animals receiving a high increase in concentrate pre- and postcalving had higher ECM305 than those subjected to a more moderate increase. Cows with a composite somatic cell count >1 million cells/milliliter at first test day produced less milk on the same day than cows with lower counts. It was concluded that rearing factors and calfhood health status can influence first lactation milk production.  相似文献   

13.
Effect of dry period length on milk yield over multiple lactations   总被引:1,自引:0,他引:1  
Shortening or omitting the dry period (DP) can improve the energy balance of dairy cows in early lactation through a decrease in milk yield after calving. Little is known about the effect of a short or no DP on milk yield over multiple lactations. Our objectives were (1) to assess the effect of DP length over multiple lactations on milk yield, and (2) to assess if the prediction of milk yield in response to DP length could be improved by including individual cow characteristics before calving. Lactation data (2007 to 2015) of 16 Dutch dairy farms that apply no or short DP were used to compute cumulative milk yield in the 60 d before calving (additional yield) and in the 305 d after calving (305-d yield), and the mean daily yield over the interval from 60 d before calving to 60 d before next calving (effective lactation yield). The DP categories were no (0 to 2 wk), short (3 to 5 wk), standard (6 to 8 wk), and long (9 to 12 wk). The effect of current DP and previous DP on yields was analyzed with mixed models (n = 1,420 lactations). The highest effective lactation yield of fat- and protein-corrected milk (FPCM) was observed for cows with a standard current DP (27.6 kg per day); a daily decrease was observed of 0.6 kg for a long DP, 1.0 kg for a short DP, and 2.0 kg for no DP. Previous DP did not significantly affect the effective lactation yield. Thus, cows can be managed with short or no DP over consecutive lactations without a change in quantity of milk losses. Cows that received no DP for consecutive lactations had a lower additional yield before calving (?172 kg of FPCM), but a higher 305-d yield (+560 kg of FPCM), compared with cows that received no DP for the first time. This could lessen the improvement of the energy balance in early lactation when no DP is applied a second time compared with the first time. For the second objective, a basic model was explored to predict effective lactation yield based on parity, DP length, and first-parity 305-d yield (n = 2,866 lactations). The basic model was subsequently extended with data about recent yield, days open, and somatic cell count. Extending the model reduced the error of individual predictions by only 6%. Therefore, the basic model seems sufficient to predict the effect of DP length on effective lactation yield. Other individual cow characteristics can still be relevant, however, to make a practical and tailored decision about DP length.  相似文献   

14.
The aim of this experiment was to quantify the milk production capacity of cows undergoing extended lactations while fed a pasture-based diet typical of those used in the seasonal-calving dairying systems of Victoria, Australia. One hundred twenty-five Holstein cows were randomly assigned to 1 of 5 groups. Breeding was progressively delayed after calving to enable management of the groups for lactation lengths of 10, 13, 16, 19, and 22 mo (equivalent to calving intervals of 12 to 24 mo). Cows were provided with a daily energy intake of at least 180 MJ of metabolizable energy/cow. This was supplied primarily by grazed pasture with supplementary cereal grain, pasture silage, and hay. Cows were dried off when milk volume fell below 30 kg/wk or when they reached 56 d before their expected calving date. Most cows (>96%) could lactate above this threshold for 16 mo, >80% for 19 mo, and >40% for 22 mo. There were negative relationships between lactation length and annual production of milk and milk solids (milk fat + protein), but losses were small until 16 mo. Annualized yields of milk solids were 497, 498, 495, 474, and 463 kg/cow for the 10, 13, 16, 19, and 22 mo groups, respectively. This reduction in annual production of milk solids with increasing lactation length was relatively less than for milk volume because during extended lactation, cows produced milk with higher concentrations of protein. Cows undergoing extended lactations also finished their lactations having gained more body weight and body condition than cows lactating for only 10 mo. The data showed that many cows on pasture-based diets were capable of lactating longer than the 10 mo that is standard for Victorian herds with seasonally concentrated calving patterns. Further, such extended lactations could be achieved with little penalty in terms of annual milk solids production.  相似文献   

15.
An investigation of the shape of the lactation curve and the mastitis incidence was conducted to identify whether management interventions of the lactation curve constitute a potential for reducing incidence of mastitis at herd level. Lactation curves were estimated to describe the variation of daily milk yield during the 305-d lactation period in Norwegian Red cows. Associations between mastitis incidence at herd level and lactation curve characteristics such as production level at onset of lactation, magnitude and time of peak milk yield, and increase and decrease of milk yield rates were studied. Data from 250,303 lactations occurring during 2005 and 2006 from 14,766 herds were obtained from the Norwegian Dairy Herd Recording System. Besides veterinary treatments, the records included information on monthly test-day milk yields. The shapes of the lactation curves at herd level were parameterized using a modified Wilmink model in two separate mixed model analyses. In the first analysis a subset of lactations with no records of veterinary treatments was used. Lactation curves from herds with high (>0·31 cases/305-d lactation) and low (<0·07 cases/305-d lactation) herd mastitis incidence rate were parameterized and compared for three separate strata of parity. The result showed that high herd mastitis incidence rate was associated with a low intercept (P<0·05), a steep slope before peak milk yield (P<0·01) and a rapid decline after peak milk yield (P<0·01). In the second analysis a subset of high-yielding lactations with veterinary treatments of mastitis only and lactations with no records of veterinary treatment were compared. This was done to investigate whether the findings at herd level were also reflected at cow level. These results showed that lactation curves from lactations with mastitis cases were associated with a steep slope before peak milk yield (P<0·05) in second and later parities and a rapid decline after peak milk yield (P<0·01) in all three parity groups.  相似文献   

16.
《Journal of dairy science》2019,102(12):11701-11717
Two retrospective studies examining data of 7,500 lactating cows from a single herd were performed with the objective of evaluating the long-term effects of clinical disease during the early postpartum period on milk production, reproduction, and culling of dairy cows through 305 days in milk (DIM). In the first study, data regarding health, milk production, reproduction, and culling of 5,085 cows were summarized. Cows were classified according to incidence of clinical problem (metritis, mastitis, lameness, digestive problem, or respiratory problem) during the first 21 DIM (ClinD21). During 305 d of lactation, cows that had ClinD21 produced, on average, 410 kg less milk, 17 kg less fat, and 12 kg less protein compared with cows that did not have ClinD21 (NoClinD21). Although the interval to first breeding was not different between groups of interest, pregnancy rate through 305 DIM was lower in cows that had ClinD21 [adjusted hazard ratio (AHR) = 0.81]. When individual breedings were analyzed, cows that had ClinD21 presented lower rates of pregnancy per breeding for breedings performed before 150 DIM, reduced numbers of calving per breeding for breedings performed before 200 DIM, and greater number of pregnancy losses for all breedings performed through 305 DIM. The rate of culling from calving through 305 DIM was higher in cows that had a single ClinD21 (AHR = 1.79) and in cows that had multiple ClinD21 (AHR = 3.06), which resulted in a greater proportion of cows leaving the herd by 305 DIM (NoClinD21 = 22.6%; single ClinD21 = 35.7%; multiple ClinD21 = 53.8%). In the second study, data regarding postpartum health and 305-d yields of milk, fat, and protein were collected from 2,415 primiparous cows that had genomic testing information. Genomic estimated breeding values (EBV) were used to predict 305-d yields of milk, fat, and protein. Genomic EBV and predicted yields of milk, fat, and protein did not differ between cows that had ClinD21 and those that did not have ClinD21. In contrast, the observed 305-d yields of milk, fat, and protein were reduced by 345, 10, and 10 kg, respectively, in cows that had ClinD21 compared with cows that did not have ClinD21. We conclude that clinical disease diagnosed and treated during the first 21 DIM has long-term effects on lactation performance, reproduction, and culling of dairy cows, which contribute to detrimental consequences of health problems on sustainability of dairy herds. Replication of our studies in multiple herds will be important to confirm our findings in a larger population.  相似文献   

17.
Jersey (JE) × Holstein (HO) crossbred cows (n = 76) were compared with pure HO cows (n = 73) for 305-d milk, fat, and protein production, somatic cell score (SCS), clinical mastitis, lifetime production, and body measurements during their first 3 lactations. Cows were in 2 research herds at the University of Minnesota and calved from September 2003 to June 2008. Best prediction was used to determine actual production for 305-d lactations as well as lifetime production (to 1,220 d in the herd after first calving) from test-day observations. During first lactation, JE × HO cows and pure HO cows were not significantly different for fat plus protein production; however, JE × HO cows had significantly lower fat plus protein production during second (−25 kg) and third (−51 kg) lactation than pure HO cows. Nevertheless, JE × HO cows were not significantly different from pure HO cows for lifetime production or lifetime SCS. The JE × HO cows were not significantly different from pure HO cows for SCS and clinical mastitis during first and second lactations; however, JE × HO cows tended to have higher SCS (3.79) than pure HO cows (3.40), but significantly lower (−23.4%) clinical mastitis during third lactation. The JE × HO cows had significantly less hip height, smaller heart girth, less thurl width, and less pin width than pure HO cows during the first 3 lactations. Furthermore, JE × HO cows had significantly less udder clearance from the ground and significantly greater distance between the front teats than pure HO cows during their first 3 lactations.  相似文献   

18.
Our objectives were to evaluate the effect of left displacement of abomasum (LDA) after correction by toggle-pin suture (TPS) on lactation performance, reproduction and health in Holstein dairy cows in a commercial dairy farm. Cows diagnosed with LDA and corrected by the TPS procedure (188 cows) during the first 70 d postpartum were matched with control herd-mates (186 controls) according to lactation number, calving date, and previous lactation 305-d mature equivalent milk yield. Cows were grouped according to parity and days in milk and fed the same total mixed ration throughout a 321-d lactation. Data collected included yields of milk and 3.5% fat-corrected milk (FCM), concentration and yields of milk fat, somatic cell count, incidence of mastitis, abortion, death and culling, in addition to reproductive measures. Cows affected with LDA corrected by the TPS procedure produced less milk and tended to produce less 3.5% FCM than control cows, but the decrease in production occurred only during the first 4 mo of lactation. Left displacement of abomasum did not affect the interval from calving to conception and conception rates, but it extended the period from calving to first postpartum artificial insemination. Incidences of abortions and mastitis were not influenced by LDA. Cows affected with LDA remained in the study for a shorter period than their control herdmates, and higher proportions of cows with LDA were sold or died. Death and culling were more pronounced immediately after the diagnosis of LDA and the TPS procedure.  相似文献   

19.
Twelve hundred ninety-six cows on 88 farms were alternately injected at calving with Levamisol or saline. Each farm was visited every 2nd wk from May to October to administer treatments to cows that would calve prior to our next visit and to collect fecal grab samples from cows for worm egg counts. Production records were collected for each cow for their first 6 mo of lactation. Fecal worm egg counts were reduced in cows treated with Levamisol for the first 2 mo postcalving. Daily milk produced was higher in cows treated with Levamisol by 1.24 kg. Milk fat and protein percentages were not different between treatment groups; however, milk fat production was higher in cows treated with Levamisol for the first 2 mo post-calving. Cows treated with Levamisol produced 235 kg more milk than control cows during their first 6 mo of lactation and were projected to produce 339 kg more milk for a 305-d lactation. Month of calving improved milk production by cows treated with Levamisol. Cows treated with Levamisol and calved in months May to July showed the highest improvement in milk production while cows that were treated with Levamisol and calved in months August to October showed no significant improvement in production. Injection of cows with Levamisol at calving improves milk production and reduces gastrointestinal worm burdens.  相似文献   

20.
The preweaning management of dairy calves over the last 30 yr has focused on mortality, early weaning, and rumen development. Recent studies suggest that nutrient intake from milk or milk replacer during the preweaning period alters the phenotypic expression for milk yield. The objective of this study was to investigate the relationship between nutrient intake from milk replacer and pre- and postweaning growth rate with lactation performance in the Cornell dairy herd and a commercial dairy farm. The analysis was conducted using traditional 305-d first-lactation milk yield and residual lactation yield estimates from a test-day model (TDM) to analyze the lactation records over multiple lactations. The overall objective of the calf nutrition program in both herds was to double the birth weight of calves by weaning through increased milk replacer and starter intake. First-lactation 305-d milk yield and residuals from the TDM were generated from 1,244 and 624 heifers from the Cornell herd and from the commercial farm, respectively. The TDM was used to generate lactation residuals after accounting for the effects of test day, calving season, days in milk, days pregnant, lactation number, and year. In addition, lactation residuals were generated for cattle with multiple lactations to determine if the effect of preweaning nutrition could be associated with lifetime milk yield. Factors such as preweaning average daily gain (ADG), energy intake from milk replacer as a multiple of maintenance, and other growth outcomes and management variables were regressed on TDM milk yield data. In the Cornell herd, preweaning ADG, ranged from 0.10 to 1.58 kg, and was significantly correlated with first-lactation yield; for every 1 kg of preweaning ADG, heifers, on average, produced 850 kg more milk during their first lactation and 235 kg more milk for every Mcal of metabolizable energy intake above maintenance. In the commercial herd, for every 1 kg of preweaning ADG, milk yield increased by 1,113 kg in the first lactation and further, every 1 kg of prepubertal ADG was associated with a 3,281 kg increase in first-lactation milk yield. Among the 2 herds, preweaning ADG accounted for 22% of the variation in first-lactation milk yield as analyzed with the TDM. These results indicate that increased growth rate before weaning results in some form of epigenetic programming that is yet to be understood, but has positive effects on lactation milk yield. This analysis identifies nutrition and management of the preweaned calf as major environmental factors influencing the expression of the genetic capacity of the animal for milk yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号