首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Comparative study for determining the K R -curves associated with the cohesive stress distribution for complete fracture process for two standard specimen geometries i.e., three-point bending test and compact tension test specimen geometries of concrete using analytical method and weight function approach is reported in the paper. The laboratory size specimen (100 ≤  D  ≤  400 mm) with initial-notch length/depth ratios 0.3 and 0.5 are considered in the investigation. The load-crack opening displacement curves for these specimens are obtained using well known version of Fictitious Crack Model (FCM). It is found from the numerical results that the weight function method improves computational efficiency without any appreciable error. The stability analysis on the K R -curves and the influence of specimen geometry and the size-effect on the K R -curves, the CTOD-curves and the process zone length during crack propagation of complete fracture process are also described.  相似文献   

2.
It is well known that the JQ theory can characterize the crack-tip fields and quantify constraint levels for various geometry and loading configurations in elastic–plastic materials, but it fails at bending-dominant large deformation. This drawback seriously restricts its applications to fracture constraint analysis. A modification of JQ theory is developed as a three-term solution with an additional term to address the global bending stress to offset this restriction. The nonlinear bending stress is approximately linearized in the region of interest under large-scale yielding (LSY), with the linearization factor determined using a two-point matching method at each loading for a specific cracked geometry in bending. To validate the proposed solution, detailed elastic–plastic finite element analysis (FEA) is conducted under plane strain conditions for three conventional bending specimens with different crack lengths for X80 pipeline steel. These include single edge notched bend (SENB), single edge notched tension (SENT) and compact tension (CT) specimens from small-scale yielding (SSY) to LSY. Results show that the bending modified JQ solution can well match FEA results of crack-tip stress fields for all bending specimens at all deformation levels from SSY to LSY, with the modified Q being a load- and distance-independent constraint parameter under LSY. Therefore, the modified parameter Q can be effectively used to quantify crack-tip constraint for bending geometries. Its application to fracture constraint analysis is demonstrated by determining constraint corrected JR curves.  相似文献   

3.
The results of experimental investigations using laser speckle interferometry on small size three-point bending notched beams and using photoelastic coating and the strain gauges on very large size compact tension specimens of concrete are presented in detail. The investigations showed that there exists a stage of stable crack propagation before unstable fracture occurs. The results are in agreement with other researchers' investigations using moire interferometry, holographic interferometry, dye-impregnation method and microscope. Further detailed study shows that the three different states, i.e., crack initiation, stable crack propagation and unstable fracture can be distinguished in the fracture process in concrete structures. In order to predict the crack propagation during the fracture process in quasi-brittle materials a double-K criterion is proposed. The double-K criterion consists of two size-independent parameters. Both of them are expressed in terms of the stress intensity factors. One of them reflects the initial cracking toughness, denoted with Kini, which can be directly evaluated by the initial cracking load, Pini, and the precast crack length, a0, using a formula of LEFM. The other one refers to the unstable fracture toughness, denoted with Kun, which can be obtained inserting the maximum load, Pmax, and the effective crack length, a, into the same formula of LEFM. The values of the two parameters, K Ic ini and K Ic un , obtained from the small size three-point bending notched beams and the large size compact tension specimens show that K Ic ini and K Ic un are size-independent. Evaluating with the K-resistance curves obtained from the same test data, it is found that the proposed double-K criterion is equivalent to it in basic principle, but, the double-K criterion can be applied more easily than the K-resistance curve. Finally, as a practical example, the application of the double-K criterion to the prediction of the crack propagation in a concrete dam is discussed.  相似文献   

4.
Using a single parameter fracture mechanics theory, a minimum specimen size requirement of min(a, b, B) >200J0 in tension and min(a, b, B) >25J0 in bending, where B is the thickness, b the remaining ligament and a is the crack length of the specimen, were derived [Shih and German (1981), International Journal of fracture 17, 27–43] which have provided the basis for modern fracture toughness testing procedures. Two-parameter fracture toughness testing including the constraint, on the other hand, is desirable since it offers a solution to the transferability issue. A size requirement for a valid two-parameter fracture toughness testing based on the J-A2 three-term solution was determined as min(a, b, B) > 11J0 [Chao and Zhu (1998), International Journal of fracture 89, 285–307] in which the limiting case is bend specimens under large scale yielding (LSY). Recent work by Chao et al. (2004, International Journal of fracture, 27, 283–302) has shown that the J-A2 dominance at a crack tip can be significantly enhanced for bending specimens under LSY if a modified J-A2 solution is adopted. This current paper further studies the size of the J-A2 dominant zone using the modified J-A2 solution for deep bend specimens with hardening from low to high and loading from SSY to LSY using finite element analysis. Based on the results, a rather relaxed specimen size requirement min(a, b, B) >6J0 is developed and recommended for a valid two-parameter fracture toughness testing using the J-A2 fracture criterion. Validity of the size requirement is demonstrated by using the experimental J-R curves from non-standard bending specimens for A285 steel.  相似文献   

5.
A simplified method for determining the double-K fracture parameters K Ic ini and K Ic un for three-point bending tests is proposed. Two empirical formulae are used to describe the crack mouth opening displacement CMOD and the stress intensity factor K I c caused by the cohesive force (x) on the fictitious crack zone for three-point bending beams. It has been found that the two empirical formulae are accurate for a large practical region of a/D. Experiments carried out by many researchers showed that the new formula of CMOD for three-point bending beams can be directly used to predict the initial crack length for precracked beams, the notch depth and the critical effective crack length, as well as the crack length in the post-critical situation with a satisfactory accuracy. Further verification is demonstrated to determine the double-K parameters K Ic ini and K Ic un. They are very close to those determined by the method proposed in our previous work. Using the simplified procedure, the experiments can be performed even without a closed-loop testing facility and the calculation can be carried out on a pocket calculator.  相似文献   

6.
This paper describes elastic–plastic crack growth resistance simulation in a ceramic/metal functionally graded material (FGM) under mode I loading conditions using cohesive zone and modified boundary layer (MBL) models. For this purpose, we first explore the applicability of two existing, phenomenological cohesive zone models for FGMs. Based on these investigations, we propose a new cohesive zone model. Then, we perform crack growth simulations for TiB/Ti FGM SE(B) and SE(T) specimens using the three cohesive zone models mentioned above. The crack growth resistance of the FGM is characterized by the J-integral. These results show that the two existing cohesive zone models overestimate the actual J value, whereas the model proposed in the present study closely captures the actual fracture and crack growth behaviors of the FGM. Finally, the cohesive zone models are employed in conjunction with the MBL model. The two existing cohesive zone models fail to produce the desired KT stress field for the MBL model. On the other hand, the proposed cohesive zone model yields the desired KT stress field for the MBL model, and thus yields J R curves that match the ones obtained from the SE(B) and SE(T) specimens. These results verify the application of the MBL model to simulate crack growth resistance in FGMs.  相似文献   

7.
The concept of J-controlled crack growth is extended to JA 2 controlled crack growth using J as the loading level and A 2 as the constraint parameter. It is shown that during crack extension, the parameter A 2 is an appropriate constraint parameter due to its independence of applied loads under fully plastic conditions or large-scale yielding. A wide range of constraint level is considered using five different types of specimen geometry and loading configuration; namely, compact tension (CT), three-point bend (TPB), single edge-notched tension (SENT), double edge-notched tension (DENT) and centre-cracked panel (CCP). The upper shelf initiation toughness J IC, tearing resistance T R and JR curves tested by Joyce and Link (1995) for A533B steels using the first four specimens are analysed. Through finite element analysis at the applied load of J IC, the values of A 2 for all specimens are determined. The framework and construction of constraint-modified JR curves using A 2 as the constraint parameter are developed and demonstrated. A procedure of transferring the JR curves determined from standard ASTM procedure to non-standard specimens or practical cracked structures is outlined. Based on the test data, the constraint-modified JR curves are presented for the test material of A533B steel. Comparison shows the experimental JR curves can be reproduced or predicted accurately by the constraint-modified JR curves for all specimens tested. Finally, the variation of JR curves with the size of test specimens is produced. The results show that larger specimens tend to have lower crack growth resistance curves.  相似文献   

8.
This paper presents numerical investigation of the influence of the specimen geometry, loading condition, size-effect and softening function of concrete on double-K fracture parameters. The input data needed for computation of the double-K fracture parameters are obtained from the well-known version of Fictitious Crack Model (FCM). FCM is developed for three standard specimens: three-point bend test, compact tension specimen and four-point bend test of size range 100–600 mm at relative size of initial crack length 0.3. The analysis of numerical results shows some interesting behaviour of double-K fracture parameters.  相似文献   

9.
The crack extension resistance and fracture properties are studied in detail for quasi-brittle materials like concrete with a softening traction-separation law by investigating the complete fracture process. The computed samples are the three-point bending notched beams of concrete with different sizes tested by other researchers. The softening traction-separation law which was proposed by Reinhardt et al. based on direct tension tests for normal concrete materials was chosen in the computations. Different distribution shapes of the cohesive force on the fictitious crack zone were considered for the corresponding loading states. The computations were mainly based on the analytic solutions for this problem using Gauss–Chebyshev quadrature to achieve the integration which is singular at the integral boundary. The crack extension resistance curves in terms of stress intensity (KR-curves) were determined by combining the crack initiation toughness that is the inherent toughness of the material needed to resist the crack initiation in the case that is in the lack of an extension of the main crack with the contribution due to the cohesive force along the fictitious crack zone during the complete processes of fracture. The situation of crack propagation can be judged by comparing KR-curves of crack extension resistance with the stress intensity factor curves which were calculated using the lengths of the extending crack and the corresponding loads at each loading states, e.g., when the crack extension resistance curve(KR-curve) is lower than the stress intensity factor curve, the crack propagation is stable; otherwise, it is unstable. In the computation, the obtained relationship between the crack tip opening displacement CTOD and the amount of crack extension for the complete fracture process is in agreement with the testing results of other researchers. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
This paper presents an analysis of the extensive experimental program aimed at assessing the influence of maximum aggregate size and specimen size on the fracture properties of concrete. Concrete specimens used were prepared with varying aggregate sizes of 4.75, 9.5, 19, 38, and 76mm. Approximately 250 specimens varying in dimension and maximum aggregate size were tested to accomplish the objectives of the study. Every specimen was subjected to the quasi-static cyclic loading at a rate of 0.125mm/min (0.005in./min) leading to a controlled crack growth. The test results were presented in the form of load-crack mouth opening displacement curves, compliance data, surface measured crack length and crack trajectories as well as calculated crack length, critical energy release rate, and fracture toughness (G 1). There is a well pronounced general trend observed: G 1 increases with crack length (R-curve behavior). For geometrically similar specimens, where the shape and all dimensionless parameters are the same, the R-curve for the larger specimens is noticeably higher than that for the smaller ones. For a fixed specimen size, G 1 increases with an increase in the aggregate size (fracture surface roughness). For the same maximum aggregate size specimens, the apparent toughness increases with specimen size. It was clear that the rate of increase in G 1, with respect to an increase of the dimensionless crack length (the crack length normalized by the specimen width), increases with both specimen size and maximum aggregate size increase. The crack trajectory deviates from the rectilinear path more in the specimens with larger aggregate sizes. Fracture surfaces in concrete with larger aggregate size exhibit higher roughness than that for smaller aggregate sizes. For completely similar specimens, the crack tortuosity is greater for the larger size specimens. The crack path is random, i.e., there are no two identical specimens that exhibit the same fracture path, however, there are distinct and well reproducible statistical features of crack trajectories in similar specimens. Bridging and other forms of crack face interactions that are the most probable causes of high toughness, were more pronounced in the specimens with larger maximum size aggregates.  相似文献   

11.
Leak-before-break (LBB) assessment of primary heat transport piping of nuclear reactors involves detailed fracture assessment of pipes and elbows with postulated throughwall cracks. Fracture assessment requires the calculation of elastic–plastic J-integral and crack opening displacement (COD)1 for these piping components. Analytical estimation schemes to evaluate elastic–plastic J-integral and COD simplify the calculations. These types of estimation schemes are available for pipes with various crack configurations subjected to different types of loading. However, such schemes for elbow (or pipe bend), which is one of the important components for LBB analyses, is very meager. Recently, elastic–plastic J and COD estimation scheme has been developed for throughwall circumferentially cracked elbow subjected to closing bending moment. However, it is well known that the elbow deformation characteristics are distinctly different for closing and opening bending modes because the ovalisation patterns of elbow cross section are different under these two modes. Development of elastic–plastic J and COD estimation scheme for an elbow with throughwall circumferential crack at intrados subjected to opening bending moment forms the objective of the present paper. Experimental validation of proposed J-estimation scheme has been provided by comparing the crack initiation, unstable ductile tearing loads and crack extension at instability with the test data. The COD estimation scheme has been validated by comparing the COD of test data with the predictions of the proposed scheme.  相似文献   

12.
Laboratory testing of fracture specimens to measure resistance curves (J − Δa) have focused primarily on the unloading compliance method using a single specimen. Current estimation procedures (which form the basis of ASTM E1820 standard) employ load line displacement (LLD) records to measure fracture toughness resistance data incorporating a crack growth correction for J. An alternative method which potentially simplifies the test procedure involves the use of crack mouth opening displacement (CMOD) to determine both crack growth and J. However, while the J-correction for crack growth effects adopted by ASTM standard holds true for resistance curves measured using load line displacement (LLD) data, it becomes unsuitable for J-resistance measurements based upon the specimen response defined in terms of load-crack mouth opening displacement (CMOD). Consequently, direct application of the evaluation procedure for J derived from LLD records in laboratory measurements of resistance curves using CMOD data becomes questionable. This study provides further developments of the evaluation procedure for J in cracked bodies that experience ductile crack growth based upon the eta-method and CMOD data. The introduction of a constant relationship between the plastic components of LLD (Δ p ) and CMOD (V p ) drives the development of a convenient crack growth correction for J with increased loading when using laboratory measurements of P-CMOD data. The methodology broadens the applicability of current standards adopting the unloading compliance technique in laboratory measurements of fracture toughness resistance data (J resistance curves). The developed J evaluation formulation for growing cracks based on CMOD data provides a viable and simpler test technique to measure crack growth resistance data for ductile materials.  相似文献   

13.
The use of universal form of weight functions for determining the KR-curves associated with the cohesive stress distribution for complete fracture process of three-point bending notched concrete beam is reported in the paper. Closed form expressions for the cohesion toughness with linear and bilinear distribution of cohesive stress in the fictitious fracture zone during monotonic loading of structures are obtained. Comparison with existing analytical method shows that the weight function method yields results without any appreciable error with improved computational efficiency. The stability analysis and the size-effect study using KR-curves of crack propagation are also described.  相似文献   

14.
The construction of a fracture resistance δR (or JR) curve requires the appropriate measurement of crack-tip opening displacement (CTOD) as a function of crack extension. This can be made by different procedures following ASTM E1820, BS7448 or other standards and procedures (e.g., GTP-02, ESIS-P2, etc.) for the measurement of fracture toughness. However, all of these procedures require standard specimens, displacement gauges, and calibration curves to get intrinsic material properties. This paper deals with some analysis and aspects related to the measurement of fracture toughness by observing the surface of the specimen. Tests were performed using three-dimensional surface displacement measurements to determine the fracture parameters and the crack extension values. These tests can be conducted without using a crack mouth opening displacement-CMOD or load-line displacement gauge, because CMOD can be calculated by using the displacement of the surface points. The presented method offers a significant advantage for fracture toughness testing in cases where a clip gauge is not easy to use, for example, on structural components. Simple analysis of stereo-metrical surface displacements gives a load vs. crack opening displacement curve. Results show that the initiation of stable crack propagation can be easy estimated as the point of the curve’s deviation. It is possible to determine the deviation point if the crack opening displacement measurements are close to crack tip in the plastic zone area. The resistance curve, CTOD-R, is developed by the local measurement of crack opening displacement (COD) in rigid body area of specimen. COD values are used for the recalculation with the CMOD parameter as a remote crack opening displacement, according to the ASTM standard.  相似文献   

15.
High temperature fatigue crack growth has been examined in the light of the new concepts developed by the authors. We observe that the high temperature crack growth behavior can be explained using the two intrinsic parameters ΔK and Kmax, without invoking crack closure concepts. The two-parameter requirement implies that two driving forces are required simultaneously to cause fatigue cracks to grow. This results in two thresholds that must be exceeded to initiate the growth. Of the two, the cyclic threshold part is related to the cyclic plasticity, while the static threshold is related to the breaking of the crack tip bonds. It is experimentally observed that the latter is relatively more sensitive to temperature, crack tip environment and slip mode. With increasing test temperature, the cycle-dependent damage process becomes more time-dependent, with the effect that crack growth is dominated by Kmax. Thus, in all such fracture processes, whether it is an overload fracture or subcritical crack growth involving stress corrosion, sustained load, creep, fatigue or combinations thereof, Kmax (or an equivalent non-linear parameter such as Jmax) remains as one essential driving force contributing to the final material separation. Under fatigue conditions, cyclic amplitude ΔK (or an equivalent non-linear parameter like ΔJ) becomes the second necessary driving force needed to induce the characteristic cyclic damage for crack growth. Cyclic damage then reduces the role of Kmax required for crack growth at the expense of ΔK.  相似文献   

16.
The crack propagation direction may affect weld metal fracture behavior. This fracture behavior has been investigated using two sets of single edge notched bend (SENB) specimens; one with a crack propagating in the welding direction (B×2B) and the other with a crack propagating from the top in the root direction (B×B) of a welded joint. Two different weld metals were used, one with low and one with high toughness values. For Weld Metal A, two specimen types have been used (B×B and B×2B) both with deep cracks. The weld metal A (with high toughness values) has reasonably uniform properties between weld root and cap. The resulting J-R curves show little effect of the specimen type, are ductile to the extent that the toughness exceeds the maximum Jmax, value allowed by validity limits and testing is in the large –scale yielding regime. In the case of weld metal B (with low toughness values) with two specimen types (B×B and B×2B) the B×B specimen has shallow cracks while the B×2B specimen has deep cracks. Both resulting J-R curves show unstable behavior despite the fact that the types of specimen and their constraints are different. The analysis has shown that crack propagation direction is most influential for a weldment with low toughness in the small scale yielding regime, whereas its influence diminishes due to ductile tearing during stable crack growth and large scale yielding. The results have shown that these effects are different in both the crack initiation phase and during stable crack growth, indicating a dependence on weld metal toughness and the microstructure of the weld metal. It can be concluded that, if resistance curves during stable crack growth do not show differences in both notch orientations, the fracture toughness values of the whole weld metal can be treated as uniform.  相似文献   

17.
The multiple specimen J 0.2/BL initiation fracture toughness test procedure from the ISO standard, ISO 12135:2002, is evaluated using the EURO fracture toughness data set. This standard is also compared with the ASTM standard, ASTM E 1820, multiple specimen J Ic procedure. The EURO round robin data set was generated to evaluate the transition fracture toughness methods for steels. However, many of the tests resulted in ductile fracture behavior giving final J versus ductile crack extension points. This is the information that is measured in a multiple specimen J initiation fracture toughness test. The data set has more than 300 individual points of J versus crack extension with four different specimen sizes. It may be the largest data set of that type produced for one material. Therefore, its use to determine J initiation values can provide an important evaluation of the standard procedures. The results showed that a J 0.2/BL value could be determined from the ISO standard for three of the four specimen sizes, the smallest size did not meet the specimen size requirement on J. The construction line slopes in this method are very steep compared with the ASTM construction line slopes. This resulted in low J initiation values, about a factor of two lower than the one from the ASTM method. Of the various criteria imposed to determine a valid J 0.2/BL value, the one limiting the maximum J value was the most questionable. It had an effect of eliminating small specimen data that was identical to acceptable large specimen data.  相似文献   

18.
Fatigue crack growth and the fracture resistance curve (R-curve) were investigated in a polycrystalline alumina (AD90) and a silicon carbide whisker-reinforced alumina composite (Al2O3-SiCw) at room temperature in air using a combined loading technique for stabilizing crack growth, and a surface film technique for monitoring crack length. Fatigue crack growth was evaluated successfully with those experimental techniques. Load shedding tests were performed until the crack became dormant, in order to determine the threshold stress intensity factor Kth. Subsequently, the specimens were used for quasi-static crack growth tests under a monotonic loading condition. The R-curves were determined in this experiment; however, fracture resistance did not increase markedly with crack growth. Detailed observations of the crack growth behaviour revealed that the flat R-curve was attributed to the shielding effect of the fatigue crack tip wake. Thus, the fatigue precrack introduced by the load shedding test was not regarded as an ideal crack for determining the R-curve. Fractographic observations were performed to investigate the mechanistic difference between fatigue and quasi-static crack growth. It was found that the cyclic loading produced fretting damage in the wake region and it reduced the shielding effect of the fatigue cracks. Based on the experimental results, the relationship between the fatigue crack growth and the R-curve is discussed as is the significance of Kth as a material parameter.  相似文献   

19.
The requirements for J-dominance, limits of the single-parameter criterion to characterize the fracture of engineering structures, and two-parameter fracture analyses are first reviewed. Through comparison, it is argued that the two-parameter fracture methodology based on the J-A 2 theory is a reasonable extension of the single parameter (J-integral) fracture methodology. Consequently the extent of J-A 2 dominance in various specimens under either tension or bending is investigated in detail in this paper. Using the J 2 flow theory of plasticity and within the small-strain framework, full field finite element solutions are obtained for both deep and shallow crack geometries of single edge notch bar under pure bending [SEN(B)] and central cracked panel in uniform tension [CC(T)]. These crack-tip stresses are compared with those in the HRR singularity fields and the J-A 2 asymptotic fields at the same level of applied J. The comparison indicates that the size R of the region dominated by the J-A 2 field is much larger than that of the HRR field around the crack tip. Except for deeply-cracked SEN(B) in low hardening material (n=10) under fully plastic conditions, the numerical results near the crack tip in both SEN(B) and CC(T) match very well with the J-A 2 asymptotic solutions in the area of interest 1<r/(J/σ0)<5 from well-contained to large scale plasticity. The implications of these results on the minimal specimen size requirements essential to a two-parameter fracture criterion based on the J-A 2 asymptotic solution are then discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Fatigue-crack-growth rate tests were conducted on compact specimens made of 2324-T39 aluminum alloy to study the behavior over a wide range in load ratios (0.1  R  0.95) and a constant Kmax test condition. Previous research had indicated that high R (> 0.7) and constant Kmax test conditions near threshold were suspected to be crack-closure free and that any differences were attributed to Kmax effects. During the tests, strain gages were placed near and ahead of the crack tip to measure crack-opening loads from local strain records on all tests, except R = 0.95. In addition, a back-face strain gage was used to monitor crack lengths and also to measure crack-opening loads from remote strain records. From local gages, significant amounts of crack closure were measured at the high-R conditions and crack-opening loads were increasing as the threshold condition was approached. Crack-closure-free data, ΔKeff (= U ΔK) against rate, were calculated. These results suggest that the ΔKeff against rate relation may be nearly a unique function over a wide range of R even in the threshold regime, if crack-opening loads were measured from local strain gages and not from remote gages. At low R, all three major shielding mechanisms (plasticity, roughness, and fretting debris) are suspected to cause crack closure. But at high R and Kmax tests, roughness and fretting debris are suspected to cause crack closure above the minimum load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号