首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在竞争性的电力市场中,准确地预测电价对电力市场的参与者有着重要的意义.全面回顾和分析了国内外的电价预测研究成果,并从预测对象、输入变量的选择、预测方法和程序以及研究历史等角度进行了分析,在此基础上比较分析了各种预测方法的优缺点,最后对电价预测研究工作提出了建议和展望.  相似文献   

2.
《华东电力》2013,(5):916-918
提出了短期电价的混合预测模型。利用集合经验模态分解将电价时间序列分解成一系列本征模态函数和余项。对不同特性的分量建立不同的预测模型。将所有分量的预测值求和作为最终的预测结果。以西班牙电力市场为例,将本文模型与其他模型进行对比,结果表明本文模型具有较高的预测精度。  相似文献   

3.
短期电价预测综述   总被引:24,自引:8,他引:24  
准确的短期电价预测可为市场参与者的竞价策略提供指导,从而减少参与者的竞价风险,为其带来稳定的收益,因此短期电价预测已成为电力市场中的研究热点。结合1997年以来的相关文献对短期电价预测进行了综述。在分析电价基本特点和电价影响因素的基础上,重点对时间序列法和神经网络法这2种常用的电价预测方法进行了评述,探讨了各方法可能的进一步研究方向。最后对电价影响因素选择、数据预处理和电价预测工具的选择这3个电价预测中的重要问题进行了讨论,并对短期电价预测的研究工作提出了一些建议。  相似文献   

4.
考虑多重周期性的短期电价预测   总被引:3,自引:1,他引:3  
考虑到电价各时段变化以及周末与工作日变化的差异,提出了区分周末的分时段短期电价预测模型。该模型首先将各日中同一时段的电价形成该时段的电价序列,再将各时段电价序列分为工作日电价序列和周末电价序列。这样形成了多个消除了日周期性和星期周期性的子电价序列,分别对各子电价序列进行预测以得到预测日电价。采用基于小波分析的广义回归神经网络对这些子电价序列分别进行提前一天的预测,各子电价序列的预测电价就形成了下一天的预测电价。采用该方法对西班牙电力市场电价进行了长时间的连续预测,并与已有的预测方法进行了详细的比较分析,研究表明该方法能够提供更准确的预测电价。  相似文献   

5.
A new conceptual framework for designing price forecasting approaches can be used to develop many different types of price forecasting models, while enhancing decision making at every level of the organization that deals with market prices.  相似文献   

6.
利用SCP预测中期电价   总被引:1,自引:0,他引:1  
目前电价预测的研究主要集中于短期预测,而中期电价预测的方法较少.该文采用浙江电力市场的历史数据,利用系统剩余容量百分比(SCP)与平均上网电价的关系曲线在不同运行年份基本一致这一特征,得出在同一电力市场中,SCP与电价的对应关系在不同的年份(或时期)有一定的普遍适用性的结论,并由此结论提出一种利用SCP与平均上网电价的关系曲线来预测中期电价的新方法.该方法的特点是,只要能预测出某一段时期的竞价负荷和可用容量,就能对该时期的电价做出预测,这对供用电双方和电力监管方都有指导作用.最后,通过实际算例验证了该预测方法的可行性.  相似文献   

7.
In the electricity market environment, electricity price forecasting plays an essential role in the decision-making process of a power generation company, especially in developing the optimal bidding strategy for maximizing revenues. Hence, it is necessary for a power generation company to develop an accurate electricity price forecasting algorithm. Given this background, this paper proposes a two-step day-ahead electricity price forecasting algorithm based on the weighted Knearest neighborhood(WKNN) method and the Gaussian process regression(GPR) approach. In the first step, several predictors, i.e., operation indicators, are presented and the WKNN method is employed to detect the day-ahead price spike based on these indicators. In the second step, the outputs of the first step are regarded as a new predictor, and it is utilized together with the operation indicators to accurately forecast the electricity price based on the GPR approach. The proposed algorithm is verified by actual market data in Pennsylvania-New JerseyMaryland Interconnection(PJM), and comparisons between this algorithm and existing ones are also made to demonstrate the effectiveness of the proposed algorithm. Simulation results show that the proposed algorithm can attain accurate price forecasting results even with several price spikes in historical electricity price data.  相似文献   

8.
杨婵  舒崇军 《电气开关》2010,48(6):35-40
以美国加州电力市场为背景,在分析了市场清算电价(MCP)的影响因素的基础上,采用了一种基于反向传播(BP)网络预测下一日市场清算电价的方法。该方法考虑了系统供求关系、历史负荷、历史电价等对未来时段电价的影响,建立了一个单隐层的神经网络结构。预测模型融合了模糊理论,利用隶属函数对温度(最高温度、平均温度、最低温度)进行了模糊处理,将这些因素作为神经网络的输入量。在负荷高峰时段,往往存在市场外机组的调度和参与者的策略性投标等问题,这些因素共同作用容易造成电价尖峰。建立一个节假日模型来预测节假日的电价。采用美国加州电力市场的历史数据进行了训练和预测分析,结果表明该模型具有良好的预测效果。  相似文献   

9.
准确的电价预测可为各市场主体的运营、发展规划提供指导,降低电价波动带来的风险,文中提出了相关预测模型。首先,基于历史数据分析了负荷水平、供给功率、可调度负荷水平、与相邻区域的功率交换水平及时段等因素对电价分布的影响,并引入基准电价概念将电价分为正常电价和高电价;然后,以上述因素为输入变量,采用邻近点技术和支撑向量机(SVM)技术确定未来电价的类别归属,正常电价利用时间序列法预测,高电价则根据历史高电价信息加权估计得到。模型以电价分布为着眼点进行分类预测,降低了对时间的依赖程度,不仅可用于短期电价预测,也为中长期预测提供了有效思路。以澳大利亚市场Queensland地区的周电价预测为例说明其有效性和实用性,给出了预测和分类精度,并通过灵敏度分析研究了基准电价选取对模型分类精度的影响。  相似文献   

10.
基于非参数条件异方差估计理论,提出了一种改进的电价曲线预测方法。文中从实际电价曲线出发,针对条件方差函数建模,并采用非参数估计方法确定其模型。另外,在非参数估计中,针对条件标准差不可测困难,引入了迭代估计算法,通过不断修正作为输入量的条件标准差估计值来提高条件方差函数的估计可信度。在研究加州电力市场2000年日前电价时间序列波动特性的基础上,对Humb节点的日前电价时间序列进行建模并模拟预测。试验结果表明,文中所提模型能够更好地体现电价时间序列波动集群性这一特征,利用非参数估计所确定的模型提升了尖峰电价的预测效果。  相似文献   

11.
数据挖掘技术在电价预测中的应用   总被引:2,自引:2,他引:2  
简要叙述了数据挖掘技术的特点,分析了影响电价的因素,提出了一种基于数据挖掘技术的电价预测方法。该方法将电价用市场供求关系、上网竞价发电功率、用户负荷需求、燃料价格、物价指数和消费水平等元素来表征,并考虑了不同电价影响因子的影响程度。利用数据挖掘中的相似性搜索技术,引进权重系数对所搜索到的匹配电价序列进行加权平均,进而得到所预测的电价值。最后举例说明了该方法的具体应用过程。  相似文献   

12.
合理优化电动汽车(EV)的充放电过程,为电网提供辅助服务.文中构建了EV参与削峰填谷的市场机制,提出响应的补偿机制;建立了计及市场电价不确定性的聚合商多目标区间调度模型;引入ε约束将原多目标优化模型转化为单目标确定性模型,得到各利润偏差下的Pareto解,进一步构建模糊满意度函数,综合满意度最高的Pa-reto解即为模型最优解.算例分析结果表明:在所建立的市场机制下,聚合商可根据市场需求,与电力公司实现良好地双向互动;运用多目标区间方法求解后,可实现模型经济性与鲁棒性的均衡,进一步验证了调度策略的可行性、有效性.  相似文献   

13.
电价的分布特性是电力市场风险管理和电力金融产品定价的重要依据。建立了一个采用虚拟变量和正弦函数来刻画现货电价序列多周期性特征的GARCH-M模型。该模型易于定阶、待估参数少,可同时处理电价序列的趋势变化、多周期、异方差及其与负荷之间的非线性相关性,具有一定的实用价值。对PJM电力市场历史数据的分析表明,电价分布的异方差和负荷的平方对电价均值具有显著的影响,电价序列具有周、半月、月、季、半年等多重周期和明显的波动集聚性。  相似文献   

14.
基于云模型的短期电价预测   总被引:1,自引:1,他引:1  
栗然  崔天宝  肖进永 《电网技术》2009,33(17):185-190
现有的电价预测方法有时间序列、神经网络、小波变换等,都是对点进行预测。该文提出一种基于云模型的短期电价预测新方法。首先,介绍了云模型的概念和特点,给出基于云模型的电价和负荷数据的离散化和概念跃升过程,得到了电价和负荷的概念模型。通过极大判定法对数据集进行软划分,建立电价与负荷的布尔型数据库,然后根据给定的支持度和置信度软域值,采用基于云的关联知识挖掘算法,得到时间、负荷和电价之间的关联规则。最后,以时间、负荷的合取作为规则前件,以电价作为规则后件,建立规则发生器,根据挖掘出的规则进行预测。该文所提方法得到的预测结果是一系列不确定的离散点的集合,集合中的每一个点都可作为预测结果提供给用户,用户可以根据经验和其它信息来适当选择结果,也可以将所有点的期望值作为结果提供给用户。  相似文献   

15.
基于残差周期修正的灰色电价预测模型   总被引:1,自引:1,他引:1  
吴兴华  周晖 《电网技术》2008,32(8):68-71
电力市场中的电价曲线具有多周期、跳跃等特性,而呈指数增长的灰色GM(1,1)模型预测误差较大,为此,文章提出了基于残差周期修正的灰色电价预测模型。该模型不仅利用了灰色模型的优点,而且通过原始数据的平滑处理、初值条件的改进以及残差周期修正使预测曲线波动起来,使拟合曲线更加接近原始数据,大大提高了模型的预测精度。算例结果验证了该方法的可行性。  相似文献   

16.
精准的电价预测有助于宏观调控的实施。但能源结构转型导致大规模可再生能源并网,因此会导致电价降低和产生波动,降低时序预测序列的相关性,加大实时电价的预测难度。针对这一问题,采用自相关函数和最大信息数计算电价自身和电价与电量关联性,为模型输入提供依据,并在此基础上应用具有深度储备池特性的深度回响网络进行实时电价预测。研究结果表明:电价与电量、电价自身具有较强相关性,应考虑自身与电量因素;深度回响网络能够显著提升预测模型的精度,并且具有较强的鲁棒性。  相似文献   

17.
短期电价预测的准确性和稳定性对电力竞价决策具有重要作用。针对目前短期电价预测方法的局限性,提出并建立了一种基于多智能体的智能化短期电价预测方法。按照智能预测和组合预测的思想,实现了各类预测模型的智能选择、定量与定性方法的有机整合,并重点研究了知识库的构建及基于多智能体的预测流程。仿真试验结果表明,与常规预测方法相比,该方法的准确性和稳定性均得到了提高。  相似文献   

18.
This paper proposes a novel nonparametric approach for the modeling and analysis of electricity price curves by applying the manifold learning methodology—locally linear embedding (LLE). The prediction method based on manifold learning and reconstruction is employed to make short-term and medium-term price forecasts. Our method not only performs accurately in forecasting one-day-ahead prices, but also has a great advantage in predicting one-week-ahead and one-month-ahead prices over other methods. The forecast accuracy is demonstrated by numerical results using historical price data taken from the Eastern U.S. electric power markets.   相似文献   

19.
基于动态计量经济学模型的短期电价预测   总被引:3,自引:3,他引:3  
电力市场中的电价受众多因素影响,单变量时间序列法已很难提高短期电价的预测精度。针对该问题,文中运用时间序列模型的动态计量方法来预测短期电价。首先建立电价和电量的一般自回归分布滞后模型;然后对电价和电量的时间序列数据进行预处理;在通过平稳性和协整性检验后,建立误差修正模型,最终由Eviews 5.0估计出模型的参数。利用此模型对澳大利亚新南威尔士州电力市场的短期电价进行预测,结果表明此模型具有较高的预测精度。  相似文献   

20.
Electricity price is of the first consideration for all the participants in electric power market and its characteristics are related to both market mechanism and variation in the behaviors of market participants. It is necessary to build a real-time price forecasting model with adaptive capability; and because there are outliers in the price data, they should be detected and filtrated in training the forecasting model by regression method. In view of these points, this paper presents an electricity price forecasting method based on accurate on-line support vector regression (AOSVR) and outlier detection. Numerical testing results show that the method is effective in forecasting the electricity prices in electric power market.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号