首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to provide basic data on the antioxidant defences in the annelid Eisenia fetida andrei (E. f. a.). Methods for measurement of three antioxidant enzymes-catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR)-and of glutathione-S-transferase (GST) were optimized. GPX activity differed according to the substrate used: cumene hydroperoxide (CUOOH) or hydrogen peroxide (H2O2). The effects on the enzyme activities of storage up to 2 months at -80 degrees C, -20 degrees C, and +4 degrees C were evaluated. The subcellular distribution (in cytosol, mitochondrial, and microsomal fractions) was examined. The properties and subcellular distribution of the enzymes and glutathione were also characterized in dissected tissues and body fluids. The GR activity decreased at -80 degrees C and was the only one not stable at this temperature. The four enzymes were localized mainly in the cytosolic fraction. CAT distribution was unusual as it was not associated with peroxisomes, its properties being consistent with a catalase-peroxidase, rather than a true catalase. However, this result could also be an artifact linked to the use of an inappropriate method to obtain the fractions. Our observations indicate the presence of a distinct cytosolic selenium-dependent GPX (Se-GPX), and of a possible microsomal Se-GPX. A strong non-Se-GPX activity was measured in the CF and CL, which could be linked to the peroxidase activity of fetidins secreted by coelomocytes and with the ROS production of these cells. This study seems to indicate that E. f. a. is well equipped for the metabolism of electrophilic and pro-oxidants through glutathione.  相似文献   

2.
In the kidney, ischaemia-reperfusion results in both hypoxic and oxidant cellular injury which is most marked in the tubules of cortex and outer medulla. These contrasting conditions may have opposite effects on the expression of enzymes that reduce or repair oxidant damage. To investigate this, the activities of CuZn and Mn superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) were measured after 4 h and 3, 6, and 10 days of reperfusion following sham surgery or 45- or 90-min left renal artery occlusion. The right kidney served as internal control. Sham surgery had no effect on Mn SOD or GPx, but caused small (p < 0.05) reductions in CuZn SOD and GST activities. Forty-five minutes of ischaemia had no net effect on Mn SOD, increased GPx activity (maximum at 6 days, p < 0.01), and reduced CuZn SOD (nadir 3 days, p < 0.02) and GST (nadir 6 days, p < 0.02) activities. Ninety minutes of ischaemia again had no net effect on Mn SOD, prevented the induction of GPx, and further suppressed the activities of CuZn SOD and GST. The activity of the non-anti-oxidant enzyme lactate dehydrogenase was equal in left and right kidneys after 45 min of ischaemia, but different (p < 0.01) 10 days following 90-min injury, due to a combination of reduced activity in the ischaemic kidney and an increase of activity in the internal control. The immediate effect of ischaemia-reperfusion injury on the kidney is to reduce the activity of intracellular anti-oxidant enzymes in proportion to the severity of the ischaemic insult. Recovery or net induction of enzyme activity paralleled tubular regeneration. Protection resulting in acquired resistance to a second ischaemic event is unlikely to be due to induction of anti-oxidant enzymes if it occurs within 6 days.  相似文献   

3.
Transgenic tobacco seedlings that overexpress a cDNA encoding an enzyme with both glutathione S-transferase (GST) and glutathione peroxidase (GPX) activity had GST- and GPX-specific activities approximately twofold higher than wild-type seedlings. These GST/GPX overexpressing seedlings grew significantly faster than control seedlings when exposed to chilling or salt stress. During chilling stress, levels of oxidized glutathione (GSSG) were significantly higher in transgenic seedlings than in wild-types. Growth of wild-type seedlings was accelerated by treatment with GSSG, while treatment with reduced glutathione or other sulfhydryl-reducing agents inhibited growth. Therefore, overexpression of GST/GPX can stimulate seedling growth under chilling and salt stress, and this effect could be caused by oxidation of the glutathione pool.  相似文献   

4.
In the embryonal carcinoma cell line Tera and its 3.7-fold cis-diamminedichloroplatinum(II) (CDDP)-resistant subline, Tera-CP, parameters were studied that might have changed in relation to induction of CDDP resistance. Phenotypes of both lines were embryonal carcinoma. Karyotypes were related with a decreased mean number of chromosomes and fewer copies of the short arm of chromosome 12 in Tera-CP. Tera-CP showed cross-resistance for melphalan and 4-hydroperoxycyclophosphamide and had an 1.4-fold increased glutathione (GSH) level, a 1.5-fold increased glutathione S-transferase (GST) activity, and a 1.4-fold increased GST pi expression compared to Tera. Tera-CP was cross-resistant to 5-fluorouracil, but thymidylate synthase activity was not increased. Topoisomerase I and II activities and c-myc RNA and protein expression were the same in both lines. Platinum accumulation was equal in both lines, and platinum-DNA binding was lower in Tera-CP than in Tera. Both cell lines were xenografted into nude mice and tumors showed marked differentiation. Tera-CP tumors were 2.8-fold resistant to CDDP compared to Tera tumors. In new cell lines derived from xenografts of Tera and Tera-CP CDDP sensitivity, GST activity and GSH level corresponded with their sensitivity and resistant origin. Tera-CP is a model of in vitro and in vivo CDDP resistance with the GSH/GST detoxifying system as an important mechanism. CDDP resistance could be induced without a concomitant increase in differentiation.  相似文献   

5.
The activity of glutathione peroxidase (GSH-Px) as well as the activities of other antioxidative enzymes: CuZn superoxide dismutase (CuZn SOD), catalase (CAT), glutathione reductase (GR) in erythrocytes, as well as the activity of plasma glutathione transferase (GST), and the plasma content of vitamins E and C were evaluated in 35 sporadic amyotrophic lateral sclerosis (sALS) patients. The results revealed significantly decreased activity of both GSH-Px and CuZn SOD in sALS patients compared with the control. These data showed that a disturbed oxidative/antioxidative balance in sALS patients exists not only in motoneurons but also in the blood. The effect of exogenously administered selenium (Se), antioxidants, amino acids, a Ca2+ channel blocker such as nimodipine, and their combination in Alsamin was evaluated by screening parameter levels after 9 weeks of treatment. Only the use of all components together enhanced the activity of GSH-Px and the amount of vitamin E in sALS patients. Judging by the results of clinical trials, this treatment slowed the course of the disease.  相似文献   

6.
In this study, the role of glutathione S-transferase (GST) P1-1, the cellular reduced glutathione (GSH) status, and ATP-dependent efflux pumps in the cellular glutathione-dependent biotransformation of thiotepa and transport of the main metabolite monoglutathionylthiotepa in relation to cytotoxicity was studied in control and GST-P1-1-transfected MCF-7 cell lines. It was demonstrated that an enhanced cellular level of GST-P1-1 leads to an enhanced formation of monoglutathionylthiotepa, which is transported out of the cell into the medium. Monoglutathionylthiotepa was able to reversibly inhibit the activity of purified GST-P1-1, but only at nonphysiological concentrations, indicating that feedback inhibition of GST by its metabolites is not a relevant process in vivo. The GST activity, cellular GSH level, and/or ATP-dependent efflux of monoglutathionylthiotepa were modulated using ethacrynic acid, D,L-buthionine-S,R-sulfoximine, probenecid, and verapamil to understand the interplay between GSTs, glutathione conjugation, and efflux of glutathione conjugates in more detail. Inhibition of the GSH biosynthesis by D,L-buthionine-R,S-sulfoximine, a specific inhibitor of gamma-glutamylcysteine synthetase, significantly reduced the glutathione conjugation of thiotepa and potentiated the cytotoxicity of thiotepa. Pretreatment of cells with ethacrynic acid resulted in decreased formation of monoglutathionylthiotepa as a result of inhibition of GST in the GST-P1-1 transfectant. In addition, the intracellular amount of monoglutathionylthiotepa increased in both of the cell lines on exposure to ethacrynic acid, indicating that transport of the glutathione conjugate was partially inhibited by the glutathione conjugate of ethacrynic acid. Transport activity of monoglutathionylthiotepa could also be inhibited by probenecid and verapamil, inhibitors of organic anion transport, without influencing the biotransformation capacity of the cells. It was demonstrated that inhibition of glutathione conjugate efflux by probenecid and verapamil leads to enhanced cytotoxicity, which indicates that besides thiotepa, monoglutathionylthiotepa is also cytotoxic for the cells. Only enhanced biotransformation and subsequent transport of the glutathione conjugate into the medium (which occurs with the GST-P1-1 transfectant) results in enhanced viability. Therefore, it was concluded that only enhanced biotransformation of thiotepa represents a real detoxification pathway when the resulting conjugate is transported out of the cells. Altogether, the results indicate that it is not the overexpression of GST per se but the interplay between GSH/GST and glutathione conjugate efflux pumps that results in increased resistance to alkylating anticancer drugs such as thiotepa.  相似文献   

7.
Recent findings suggest that intracellular oxidants are involved in the induction of apoptosis and this type of cell death can be inhibited by various antioxidants. In our accompanying paper, we have shown apoptosis in the villus tip cells of the monkey small intestinal epithelium. The aim of the present study was to evaluate the possible relationship between oxidative stress, antioxidant levels and the apoptotic process in the monkey small intestinal epithelium. Monkey small intestinal epithelial cells were isolated into different fractions consisting of villus, middle and crypt cells. Mitochondrial function was assessed by the reduction of the tetrazolium dye, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), with and without succinate. The extent of lipid peroxidation was assessed by measuring the formation of conjugated diene, depletion of polyunsaturated fatty acids and alpha-tocopherol. Level of antioxidant enzymes like, superoxide dismutase (SOD), catalase, glutathione S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase were also quantitated in various cell fractions. MTT reduction was significantly decreased in villus cells as compared to the cells from other fractions and this was evident even in presence of the respiratory substrate, succinate. Increased formation of conjugated diene and depletion of polyunsaturated fatty acids were seen in villus and crypt cells as compared to middle fraction cells. The alpha-tocopherol level was decreased in both villus and crypt cells as compared to cells from middle region. Significant decrease of SOD activity was seen in the villus tip cells and a slight decrease was seen in the crypt fractions. Glutathione dependent enzymes like GST, GPx and GSH reductase showed higher activity in the villus fractions. A similar observation was also seen in the catalase activity. This study has shown that although oxidative stress is seen in both villus and crypt cells, decreased mitochondrial function was seen in villus tip cells which may be responsible for apoptotic process in the intestinal epithelium.  相似文献   

8.
The role of glutathione-S-transferase (GST) in alkylator drug resistance has been studied in MatB rat mammary carcinoma cells. A series of GST transfectant cell lines was established by using an expression vector containing the complementary DNA for the rat GST Yc gene under regulation of the SV40 early region promoter and the antibiotic resistance plasmid pSV2neo. Transfectant cell lines expressing up to 4-fold higher total GST activity than in the parental wild type cell line were identified. Southern blot analysis confirmed a DNA fragment corresponding in size to the transfected GST Yc complementary DNA. Wild type MatB cells contain very low levels of Yc protein, whereas the Yc+ clones showed greatly increased amounts of the Yc subunit. The effect of increased GST Yc activity on the sensitivity of the transfected clones to various cytotoxic agents was assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell survival assay. The clones expressing recombinant GST Yc were more resistant to melphalan (6- to 12-fold), mechlorethamine (10- to 16-fold), and chlorambucil (7- to 30-fold). In late passage populations of the GST Yc+ clones that had been grown over a period of 14 months under continuous selection in G418, GST activity was decreased and it was paralleled by a decrease in Yc protein. These late passage clones with diminished GST Yc content also demonstrate a partial reversion toward the wild type phenotype as determined by cytotoxicity assays using melphalan, mustargen, and chlorambucil. Interstrand DNA cross-links induced by mechlorethamine were significantly lower at 0, 2, and 20 h posttreatment in one of the GST Yc+ clones when compared to wild type MatB cells. These studies indicate that GST Yc overexpression can confer resistance to alkylating agents and that this correlates with inhibition of DNA cross-link formation.  相似文献   

9.
NIH/3T3 mouse fibroblasts were transfected with the cDNA for manganese superoxide dismutase (MnSOD), and two clones overexpressing MnSOD activity were subsequently characterized by comparison with parental and control plasmid-transfected cells. One clone with a 1.8-fold increase in MnSOD activity had a 1.5-fold increase in glutathione peroxidase (GPX) activity (increased GPX-adapted clone), while a second clone with a 3-fold increase in MnSOD activity had a 2-fold decrease in copper, zinc superoxide dismutase (CuZnSOD) activity (decreased CuZnSOD-adapted clone). Increased reactive oxygen species (ROS) levels compared with parental or control plasmid-transfected cells were observed in nonsynchronous cells in the increased GPX-adapted clone, but not in the decreased CuZnSOD-adapted clone. The two MnSOD-overexpressing clones showed different sensitivities to agents that generate oxidative stress. Flow cytometry analysis of the cell cycle showed altered cell cycle progression in both MnSOD-overexpressing clones. During logarithmic growth, both MnSOD-overexpressing clones showed increased mitochondrial membrane potential compared with parental and control plasmid-transfected cells. Both MnSOD-overexpressing clones showed a decrease in mitochondrial mass at the postconfluent phase of growth, suggesting that mitochondrial mass may be regulated by MnSOD and/or ROS levels. Our results indicate that adaptation of fibroblasts to overexpression of MnSOD can involve more than one mechanism, with the resultant cell phenotype dependent on the adaptation mechanism utilized by the cell.  相似文献   

10.
The aim of this work was to determine the activity of the antioxidant enzymes: superoxide dismutase (EC 1.15.1.1; SOD), catalase (EC 1.11.1.6; CAT), glutathione peroxidase (EC 1.11.1.9; GSH-Px), glutathione-S-transferase (EC 2.5.1.18; GST), glutathione reductase (EC 1.6.4.2; GR) and the low molecular mass antioxidants: ascorbic acid (ASA) and vitamin E (vit E) in the kidney of ground squirrels during circannual changes. Keeping the ground squirrel at the temperature of thermic neutrality (30 degrees C) provides a stable euthermic state during the whole year and thus any change is due to the circannual rhythm. The highest specific activity of all examined antioxidative defense enzymes in the kidney was found in the spring, when ground squirrels are seasonally the most active. In the summer, lower specific activity of GSH-Px as well as of SOD and CAT were noted and, when expressed per g wet mass, only a decrease in GSH-Px activity was recorded. In the kidney of ground squirrels kept at 30 degrees C, the lowest specific activity of all examined enzymes was found during the winter and, when expressed per g wet mass, only the SOD activity was lower than in the spring and summer. Higher amounts of vitamins C and E were found in the ground squirrel kidneys in the summer. The results obtained in this work demonstrate that circannual regulation of metabolic activity, which is inherent to seasonal hibernators, is also expressed at the level of antioxidative defense in the kidneys.  相似文献   

11.
A drug-resistant cell line (EAC/Dox) was developed by repeated exposure of Ehrlich ascites carcinoma cells to Doxorubicin (Dox) in vivo in male albino Swiss mice (6-8 weeks old). The weekly i.p. injections of Dox to mice (2 or 4 mg/kg/week for 4 months) gave rise to Dox-resistant cell line EAC/Dox, which displayed typical multidrug resistant (MDR) features of cross-resistance to a number of structurally and functionally unrelated drugs like doxorubicin, vinblastine and cisplatin. Moreover, the EAC/Dox cell line had lower drug accumulation than drug-sensitive (EAC/S) cells. Study of Western blots and immunofluorescence revealed that P-glycoprotein 170 kDa (P-gp) was absent in EAC/Dox cells. The drug resistance appeared to be due to the presence of a higher level of reduced glutathione (GSH) and glutathione S-transferase (GST) in EAC/Dox cells than in drug-sensitive (EAC/S) cells. The two structurally similar hydroxamic acid derivatives, i.e. oxalyl bis(N-phenyl)hydroxamic acid (X1) and succinyl bis(N-phenyl)hydroxamic acid (X2), having very low in vitro toxicity (IC50 value 250 microg/ ml), were investigated for their efficacy to reverse MDR. The compound X1 was able to reverse the effect of MDR and reduce GST in EAC/Dox cells. The compound X2 had no ability to reverse the effect of MDR. Further study on the mechanism of glutathione depletion and the resistance modifying property of X1 on other cell lines is warranted.  相似文献   

12.
Heart and red blood cell endogenous antioxidant status and plasma lipids were investigated in hypertensive, 14-week-old spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats fed a standard commercial rat chow. Specific heart and red blood cell antioxidant enzyme activities, as well as the susceptibility of tissues to H2O2-induced glutathione (GSH) depletion and lipid peroxidation, were measured. Systolic blood pressure in SHR was greater than in WKY rats at 13 weeks of age (197 +/- 12 vs. 132 +/- 14 mmHg (1 mmHg = 133.3 Pa); p < or = 0.05), confirming the presence of hypertension in SHR. Red blood cell catalase (CAT) and superoxide dismutase (SOD) activities were greater (p < or = 0.05) in SHR than WKY rats. Red blood cell CAT activity was positively correlated (r = +0.634; p = 0.026) with SOD, which in turn was correlated (r = +0.709; p = 0.049) with systolic blood pressure. Heart SOD activity was higher (p < or = 0.05) in SHR, while glutathione reductase (GSSG-Red) activity was lower (p < or = 0.05) than in WKY rats. This reduced ability to recycle GSH in the heart coincided with greater (p < or = 0.05) levels of H2O2-induced lipid oxidation products in SHR. Plasma total cholesterol and triacylglycerol levels were lower (p < or = 0.05) in SHR than WKY rats, with no visible signs of atherosclerosis in either SHR or WKY rats. In summary, hypertension in SHR was associated with alterations in antioxidant enzyme profiles of red blood cells and heart, with the latter showing an increased susceptibility to in vitro lipid oxidation. Although hypertension is a recognized factor in the development of human atherosclerosis, spontaneously hypertensive rats did not exhibit signs of aortic plaque, reflecting the resistance of this species to the development of atherosclerosis.  相似文献   

13.
The aim of the current study was to elucidate the synergism of dietary calcium restriction and exhaustive exercise in the antioxidant enzyme system of rat soleus muscle, and to investigate the involvement of neutrophils in exercise-induced muscle damage. Forty-eight male Wistar rats were assigned to the following groups: control (C) or calcium-restricted [1 month (1 M) or 3 months (3 M)]. Each group was subdivided into acutely exercised or non-exercised groups. Soleus muscle from each rat was analysed to determine the levels of antioxidant enzymes [Mn-superoxide dismutase (SOD), Cu, Zn-SOD, glutathione peroxidase (GPX), and catalase (CAT)]. Dietary calcium restriction resulted in calcium deficiency and upregulated the antioxidant enzymes examined except GPX. Conversely, exhaustive exercise significantly decreased GPX and CAT, but not SODs activities in the calcium-restricted (1 M and/or 3 M) rats. Contents of immunoreactive Mn-SOD and Cu,Zn-SOD were only increased in the 3 M rats. During calcium restriction, the mRNA expression of both forms of SOD showed initial upregulation, followed by downregulation. Exhaustive exercise significantly increased the mRNA expressions only in the 3 M rats. Moreover, exhaustive exercise markedly increased myeloperoxidase activity in soleus muscles from the 1 M and 3 M rats compared with the C rats, and significantly enhanced the ability of neutrophils to generate superoxide in the 3 M rats. The results demonstrate that dietary calcium restriction upregulates certain antioxidant enzyme activities in rat soleus muscle, indicating an enhanced resistance to potential increases in intracellular reactive oxygen species. The results also suggest that exhaustive exercise may cause oxidative damage in soleus muscle of calcium-deficient rats through the activation of neutrophils.  相似文献   

14.
To develop cell lines which respond to both a physiological cytokine and chemical agents by the induction of differentiation pathway, factor dependent B6SUtA murine bone marrow cells were transfected with the erythropoietin receptor (EpoR). Clones were obtained that exhibited different sensitivities to erythopoietin (Epo), with one clone exhibiting erythroid differentiation in response to Epo, while in another Epo acted as a proliferation stimulus. Moreover, parental B6SUtA cells were sensitive to the initiation of differentiation by butyrate, diazepam and hemin. Thus, B6SUtA cells appear to represent a unique model to dissect the signaling molecules involved in the growth and differentiation pathways employed by Epo and non-physiological chemicals.  相似文献   

15.
L-buthionine-S,R-sulfoximine (BSO) selectivley inhibits glutathione (GSH) synthesis. Malignant melanoma may be uniquely dependent on GSH and its linked enzymes, glutathione S-transferase (GST) and GSH-peroxidase, for metabolism of reactive orthoquinones and peroxides produced during melanin synthesis. We compared the in vitro effects of BSO on melanoma cell lines and fresh melanoma specimens (n = 118) with breast and ovarian cell lines and solid tumors (n = 244). IC50 values (microM) for BSO on melanoma, breast and ovarian tumor specimens were 1.9, 8.6, and 29, respectively. The IC90 for melanoma was 25.5 microM, a level 20-fold lower than steady state levels achieved clinically. The sensitivity of individual specimens of melanoma correlated with their melanin content (r = 0.63). BSO synergistically enhanced BCNU activity against melanoma cell lines and human tumors. We followed GSH levels, GST enzyme activity, GST isoenzyme profiles and mRNA levels after BSO. BSO (50 microM) treatment for 48 hr resulted in a 95% decrease in ZAZ and M14 melanoma cell line GSH levels, and a 60% decrease in GST enzyme activity. GST-mu protein and mRNA levels were significantly reduced in both cell lines. GST-pi expression was unaffected. These data suggest that BSO action on melanoma may be related to GSH depletion, diminishing the capacity to scavenge toxic metabolites produced during melanin synthesis. We report here for the first time that BSO enhancement of alkylator action may be related in part to down regulation of GST. BSO may be a clinically useful adjunct in the treatment of malignant melanoma.  相似文献   

16.
The cytotoxic mechanism of a conjugate of doxorubicin (DXR) and glutathione (GSH) via glutaraldehyde (GSH-DXR) was investigated using DXR-sensitive (AH66P) and -resistant (AH66DR) rat hepatoma cells. GSH-DXR accumulated in AH66DR cells as well as in AH66P cells without efflux by P-gp and exhibited the potent cytocidal activity against both cells compared with DXR. To examine whether thiol from GSH-DXR affected the expression of cytotoxicity, two conjugates of DXR, with modified peptides containing alanine or serine substituted for cysteine in GSH were prepared and their cytotoxicities determined. Substitution of these amino acids for cysteine resulted in an approximately two- to fourfold reduction in cytotoxic activity against both cell lines compared with the effect of GSH-DXR. Depletion of intracellular GSH by treatment of both cells with buthionine sulphoximine did not change the cytotoxic activity of DXR, BSA-DXR or GSH-DXR. By co-treating the cells with tributyltin acetate, an inhibitor of glutathione S-transferase (GST), and either DXR, BSA-DXR or GSH-DXR, the cytotoxicity was markedly increased. Interestingly, GSH-DXR showed non-competitive inhibition of GST activity and its IC50 value was 1.3 microM. These results suggested that the inhibition of GST activity by GSH-DXR must be an important contribution to the expression of potent cytotoxicity of the drug.  相似文献   

17.
The erythroid-potentiating activity (EPA) of the tissue inhibitor of metalloproteinase-1 (TIMP-1) was re-examined using ELM-I-1-3, a mouse erythroleukemia cell line, which responded well to erythropoietin. Depletion of pre-existing TIMP-1 from fetal calf serum in culture medium using monoclonal antibody suppressed erythropoietin-induced differentiation as measured by the induction of hemoglobin, commitment assay and globin mRNAs. The removal of TIMP-1 also suppressed the proliferation of ELM-I-1-3 as measured by cell number and de novo DNA synthesis. These changes were reversed by the addition of purified TIMP-1 to the culture medium. Anti-TIMP-1 antibody also blocked both hexamethylene bisacetamide (HMBA)-induced erythroid differentiation and the proliferation of both ELM-I-1-3 and Friend erythroleukemia cells. Considering previous reports analyzing the chemical induction of Friend mouse erythroleukemia cell differentiation, our results suggest that erythropoietin- or HMBA-induced erythroid differentiation might also be coupled with cell proliferation. Our 3H thymidine-uptake experiment shows that TIMP-1 removal was also effective in the inhibition of cell growth of various other cell lines in addition to erythroleukemia cell lines. These results suggest that EPA action of TIMP-1 on erythroid leukemia cell lines is closely related to its activity to promote the cell growth of various cell lines and cells including erythroleukemia cell lines.  相似文献   

18.
Since free radicals and peroxides seem to be involved in the toxicity of alcohol, several authors have examined the variations of blood activities of antioxidant enzymes in alcoholics, but published results are somewhat conflicting. In this study, erythrocyte (E) activities of superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT), and plasma (P) activities of SOD and GPX were measured in 58 male alcoholics without evidence of severe liver disease before and after a 21-day weaning period, and in a control group of 78 healthy men. Before abstinence, E-SOD and E-GPX activities were, respectively, 6.8% and 13.0% lower in alcoholics than in controls (p < or = .05 and p < or = .01, respectively), whereas the slight increases of E-CAT, P-SOD and P-GPX were not statistically significant. After 21 days of abstinence, no change in activities of the erythrocyte enzymes was noticed; conversely, P-SOD activity was reduced by 8.3% (p < or = .01) and P-GPX by 23.3% (p < or = .001). Variations of blood antioxidant enzymes observed in patients were of limited amplitude and do not allow the use of either of them as markers of alcohol abuse.  相似文献   

19.
PURPOSE: The aim of these studies was to determine whether chemotherapy-resistant tumor cell sublines derived from a single starting cell population with identical treatment protocols, have the same mechanism of resistance. METHODS AND MATERIALS: Twelve cyclophosphamide-resistant sublines were derived from KHT-iv murine sarcoma cells by repeated exposures to 2, 4, or 8 microg/ml doses of 4-hydroperoxycyclophosphamide (4-OOHCP). To investigate possible mechanisms of resistance, glutathione (GSH) levels, glutathione S-transferase (GST) activity, and aldehyde dehydrogenase (ALDH) activity were determined. In addition, studies with the GSH depletor buthionine sulfoximine (BSO) and the ALDH inhibitor diethylamino-benzaldehyde (DEAB) were undertaken. RESULTS: Resistant factors to 4-OOHCP, assessed at 10% clonogenic cell survival, ranged from 1.5-7.0 for the various cell lines. Crossresistance to melphalan and adriamycin also were commonly observed. Increased GSH levels, GST activity and ALDH activity were detected in the sublines but not all exhibited the same pattern of biochemical alterations. The response to GSH and ALDH inhibitors also varied among the sublines; the resistance being reversible in some cell lines but not others. CONCLUSION: The present results indicate that when resistant sublines are derived simultaneously from the same starting cell population, the observed mechanisms of resistance may not be the same in each of the variants. These findings support the hypothesis that preexisting cellular heterogeneity may affect mechanisms of acquired resistance.  相似文献   

20.
The effect of intermittent sprint cycle training on the level of muscle antioxidant enzyme protection was investigated. Resting muscle biopsies, obtained before and after 6 wk of training and 3, 24, and 72 h after the final session of an additional 1 wk of more frequent training, were analyzed for activities of the antioxidant enzymes glutathione peroxidase (GPX), glutathione reductase (GR), and superoxide dismutase (SOD). Activities of several muscle metabolic enzymes were determined to assess the effectiveness of the training. After the first 6-wk training period, no change in GPX, GR, or SOD was observed, but after the 7th week of training there was an increase in GPX from 120 +/- 12 (SE) to 164 +/- 24 mumol.min-1.g dry wt-1 (P < 0.05) and in GR from 10.8 +/- 0.8 to 16.8 +/- 2.4 mumol.min-1.g dry wt-1 (P < 0.05). There was no significant change in SOD. Sprint cycle training induced a significant (P < 0.05) elevation in the activity of phosphofructokinase and creatine kinase, implying an enhanced anaerobic capacity in the trained muscle. The present study demonstrates that intermittent sprint cycle training that induces an enhanced capacity for anaerobic energy generation also improves the level of antioxidant protection in the muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号