首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Broadband low-insertion-loss E-plane stub-loaded rectangular waveguide phase shifters are designed with the method of field expansion into normalized eigenmodes, which includes higher-order mode interaction between the step discontinuities. Computer-optimized three-stub prototypes of 90° differential phase shift with reference to an empty waveguide of appropriate length, designed for R140-band (12.4-18 GHz) and R320-band (26.5-40 GHz) waveguides, achieve typically ±0.5° phase shift deviation within about 20% bandwidth. For two-stub designs, the corresponding values are about +2.5°/-1° and 17%. Both designs achieve minimum return loss of 30 dB. The theory is verified by measurements of a compact R120-band (10-15 GHz) waveguide phase shifter design example milled from a solid block, showing measured insertion loss of about 0.1 dB and about +2.5°/-0.5° phase error between 10.7 and 12.7 GHz  相似文献   

2.
Impedance-matched ferrite-loaded waveguide nonreciprocal phase shifters are designed using the method of field expansion into eigenmodes, which includes higher order mode interaction between the step discontinuities. Computer-optimized Ku -band ferrite stepped design examples, of 45° and 90° nonreciprocal differential phase shifts, attain typically about 2° phase error and less than -25 dB input reflection within a bandwidth of about 5 percent. Compact designs are achieved by thicker uniform ferrite slabs with dielectric transformer sections at each end. The theory is verified by comparison with available results from measurements and other methods.  相似文献   

3.
Optimum rectangular waveguide E-plane branch guide phase shifters and 180° branch guide couplers are designed with the rigorous method of field expansion into normalized eigenmodes. The design includes both the higher order mode interaction between the step discontinuities and the finite step and branch heights. The phase shifter design applies the Schiffman principle to branch guide couplers where two ports are short-circuited. The 180° coupler design combines the advantage of the broadband potential of multiple-branch couplers with the low-insertion-loss qualities of E-plane stub-loaded phase shifters. A computer-optimized phase shifter prototype for the waveguide Ku-band (12-18 GHz) shows a 90°±1° differential phase shift with reference to an empty waveguide within about 23% bandwidth. Five-branch three-stub coupler prototypes, designed for 3±0.2 dB coupling, for the waveguide Ku- and Ka-bands (26-40 GHz) achieve a 180°±1° differential phase shift at the output ports within about 19% bandwidth, as well as more than 30 dB isolation and return loss. The theory is verified by measured results  相似文献   

4.
The five-port matched pseudo-magic tee consists of an input waveguide, two load arm waveguides which are coupled into the input waveguide with +90° and -90° phase shifts, respectively, and an output waveguide which is split into two load waveguides by a septum. The improvements include a much broader matching and isolation bandwidth, higher isolation between arms, better matching into arms, and a variety of modifications for different applications. These characteristics have been obtained by employing frequency-insensitive phase shifters. Hence, frequency coverage is mainly limited by mechanical asymmetry and the characteristics of the directional coupler in the magic tee. While this type of hybrid junction is not a true magic tee because the load arms are not used as the input arm, it does have several applications which an ordinary magic tee does not have. X-, K-, and M-band models were examined experimentally, and highly sensitive and accurate impedance measurements were made.  相似文献   

5.
A low insertion lose fin-line PIN diode phase shifter is presented. 90° and 180° phase shifters are realized respectively. Phase error less than 5° and bandwidth 3 GHz at Ka band are achieved. The insertion loss is better than 0.5dB. The BPSK and QPSK modulators consisting of this phase shifter and fin-line coupler are also given. The circuits and results are given.  相似文献   

6.
The design approach and performance of a 22.5°/45°digital phase shifter based on a switched filter network for X-band phased arrays are described. Both the MMIC phase shifters are fabricated employing a 0.25μm gate GaAs pHEMT process and share in the same chip size of 0.82×1.06 mm2. The measurement results of the proposed phase shifters over the whole operating frequency range show that the phase shift error is less than 22.5°±2.5°, 45°±3.5°, which shows an excellent agreement with the simulated performance, the insertion loss is within the range of 0.9-1.2 dB for the 22.5°phase shifter and 0.9-1.4 dB for the 45°phase shifter, and the input/output return loss is better than -12.5 and -11 dB respectively. They also achieve the similar P1dB continuous wave power handing capability of 24.8 dBm at 10 GHz. The phase shifters show a good phase shift error, insertion loss and return loss in the X-band (40%), which can be employed into the wide bandwidth multi-bit digital phase shifter.  相似文献   

7.
A 90° phase switch in finline technique has been developed for application in a W-band homodyne network analyzer. It is realized on a 0.127 mm fibre reinforced teflon substrate in a standard WR 10-waveguide. It employs two low capacitance beam-lead PIN diodes mounted in series to the finline. The waveguides are connected via Dolph-Chebyshev tapers. The analysis of this circuit shows that the diode junction capacitance imposes certain constraints for the wave impedances which must be realized. They can only be met with overlapping antipodal finlines. There are several analytical solutions with different lengths and wave impedances of the transmission line sections. The choice has been taken with respect to bandwidth in the limits imposed by the range of wave impedances which can be realized. Between 90 and 105 GHz, the phase error of the realized modulator is below ±2.5°, and the amplitude imbalance is less than 0.5 dB.  相似文献   

8.
W-band CPW RF MEMS circuits on quartz substrates   总被引:3,自引:0,他引:3  
This paper presents W-band coplanar waveguide RF microelectromechanical system (MEMS) capacitive shunt switches with very low insertion loss (-0.2 to -0.5 dB) and high-isolation (/spl les/ -30 dB) over the entire W-band frequency range. It is shown that full-wave electromagnetic modeling using Sonnet can predict the performance of RF MEMS switches up to 120 GHz. Also presented are W-band 0/spl deg//90/spl deg/ and 0/spl deg//180/spl deg/ switched-line phase shifters with very good insertion loss (1.75 dB/bit at 90 GHz) and a wide bandwidth of operation (75-100 GHz). These circuits are the first demonstration of RF MEMS digital-type phase shifters at W-band frequencies and they outperform their solid-state counterparts by a large margin.  相似文献   

9.
移相器是相控阵系统中的重要组成器件,随着频率的增加,金属的趋肤深度及波导表面粗糙度对器件的影响不可忽略,会使移相器的损耗增加。对此,提出一种基于加载线型的平面太赫兹移相器。将2个枝节并联在微带线上,在并联枝节上加载开关二极管,调节两段枝节的电长度得到所需的移相量;控制开关的导通和断开,实现不同的移相角度。仿真结果表明,在192~210 GHz频带范围内,导通和断开的反射系数都小于-10 dB,插入损耗小于0.5 dB,移相误差小于5°,其中在5 GHz带宽范围内,移相误差小于1°。提出的平面型移相器,加工容易,成本低,便于系统集成化,在太赫兹相控阵系统中具有广泛的应用前景。  相似文献   

10.
A method for calculating the phase shift of a dielectrically loaded circular waveguide with small ellipticity is described. It gives an excellent result for enqineering purposes, although it is not rigorous in theory. The maximum difference between the calculated and measured results for a 90° phase shift is only 1.4o in 500MHz bandwidth at 4GHz.  相似文献   

11.
This paper presents wideband compact differential reflective phase shifter based on the double layer slot-coupled coupler configuration. This novel phase shifter arrangement consists of a 3-dB hybrid coupler with the coupled and transmission ports terminated with rectangular and elliptically shaped microstrip loads. By altering the ports termination of the coupler, phase shifters propose differential phase ranging from −90° to +90° over 1.3–5.9G Hz frequency band. To achieve different range of phase performance, the proper reactance is calculated at the outputs of coupler. These reactances are transformed to the elliptical or rectangular-shaped microstrip load with various dimensions for every phase shifter. The calculation and simulations results show that the developed circuits could provide ±30°, ±60°, ±45° and ±90° differential phase shifts. For verification of this wideband phase shifter design method, two phase shifter example with rectangular and elliptical load termination is fabricated and measured. The measured return loss of the phase shifter with elliptically load is better than 10 dB over 1.3–5.9G Hz frequency band as well as insertion loss is less than 1 dB. The phase shift deviation is less than 2.1°. The results demonstrate that the proposed phase shifters are well suited for use in GPS/LTE/WiMax/WLAN frequency bands.  相似文献   

12.
Different lengths of WR3 (220–330 GHz) and WR10 (75–110 GHz) waveguides are fabricated through direct metal laser sintering (DMLS). The losses in these waveguides are measured and modelled using the Huray surface roughness model. The losses in WR3 are around 0.3 dB/mm and in WR10 0.05 dB/mm. The Huray equation model is accounting relatively good for the attenuation in the WR10 waveguide but deviates more in the WR3 waveguide. The model is compared to finite element simulations of the losses assuming an approximate surface structure similar to the resulting one from the DMLS process.  相似文献   

13.
宽频带L波段360°模拟信号移相器的设计   总被引:1,自引:0,他引:1  
该文介绍了宽频带360°模拟移相器的设计理论。针对移相器的线性调相、平衡插入损耗波动、宽频带等进行了详细的探讨,且推导出确定移相器频带宽度的目标函数。用CAD方法迅速而准确地优化各网络设计参量。采用微波集成电路工艺制作的L波段模拟移相器在1.3~2.1GHz范围内可获得360°连续可变相移,最大调相电压18V,中心频率线性度优于±2.5%,插入损耗波动小于3dB。综合性能均优于国内报道的移相器。  相似文献   

14.
含有平行铁氧体及介质片的异形波导传输特性   总被引:1,自引:0,他引:1  
佘显烨 《电子学报》1999,27(3):86-88,100
用直线法和横向共振相结合的方法来求含有平行铁氧体及介质片的异形波导的传输特性。计算结果表明,含有铁氧体的脊形波导具有宽频带特性,而含有铁氧体的槽形波导具有较大的差相移,适于做高优值移相器。  相似文献   

15.
A phased array is presented at a frequency of 70 GHz, consisting of a corporate feed, ferrite phase shifters and dielectric rod antennas. Metal waveguides were utilized to construct the feed network, whereas a special dielectric waveguide structure was employed for the ferrite phase shifter and dielectric rod antenna. Beam scanning can be performed electronically controlled in the horizontal plane.  相似文献   

16.
Analytical and experimental results are presented on a circularly polarized waveguide lens that has much greater bandwidth than conventional waveguide lenses. This is achieved by designing the lens to have equal group delay for all rays from the focal point of the lens to the aperture plane. Haft-wave-plate phase shifters in each waveguide element are then oriented to produce a planar phase front. This results in a lens whose aperture phase distribution remains essentially constant over a much wider frequency range than in conventional waveguide lenses. A comparison with a minimum thickness conventional lens and with a phase compensated (Coulbourn) lens is made. A 46-in X band lens was built and tested over a frequency range from 7-9 GHz to confirm the bandwidth performance.  相似文献   

17.
An optical modulator having a bandwidth of 1.6 GHz and a required power of 1 W for 100-percent intensity modulation at the wavelength of 0.63 μm has been constructed. The wide-band and low-drive power performance is obtained by the use of a structure-like beam waveguide.  相似文献   

18.
Two 4-bit active phase shifters integrated with all digital control circuitry in 0.13-mum RF CMOS technology are developed for X- and Ku-band (8-18 GHz) and K-band (18-26 GHz) phased arrays, respectively. The active digital phase shifters synthesize the required phase using a phase interpolation process by adding quadrature-phased input signals. The designs are based on a resonance-based quadrature all-pass filter for quadrature signaling with minimum loss and wide operation bandwidth. Both phase shifters can change phases with less than about 2 dB of RMS amplitude imbalance for all phase states through an associated DAC control. For the X- and Ku-band phase shifter, the RMS phase error is less than 10o over the entire 5-18 GHz range. The average insertion loss ranges from to at 5-20 GHz. The input for all 4-bit phase states is typically at -5.4 plusmn1.3 GHz in the X- and Ku-band phase shifter. The K-band phase shifter exhibits 6.5-13 of RMS phase error at 15-26 GHz. The average insertion loss is from 4.6 to at 15-26 GHz. The input of the K-band phase shifter is at 24 GHz. For both phase shifters, the core size excluding all the pads and the output 50 Omega matching circuits, inserted for measurement purpose only, is very small, 0.33times0.43 mm2 . The total current consumption is 5.8 mA in the X- and Ku-band phase shifter and 7.8 mA in the K-band phase shifter, from a 1.5 V supply voltage.  相似文献   

19.
Results are presented for planar “insulated image guide” structures modelling surface magnetoplasmon based non-reciprocal devices for the near-millimeter wave range. Sample results using GaAs substrates show acceptable performance for isolators over a bandwidth of 65 GHz in the 400 GHz range and differential phase shifters over a bandwidth of 30 GHz in the 550 GHz range with a 10% phase shift variation.  相似文献   

20.
Lumped-element second-order active filters are presented which can either be tuned to an all-pass response and then especially used in 90° phase shifters, or tuned to a bandstop response. Their structures have been chosen so that they can be easily implemented in the microwave domain. Preliminary simulations have shown that the filter having the highest-frequency capabilities results in a 90° phase shifter operating up to the (6 GHz, 1O GHz) band, and that its centre frequency can be tuned up to 15 GHz when it is used as a bandstop filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号