首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Pseudomonas aeruginosa, resistance to imipenem is mainly related to a lack of protein OprD and resistance to fluoroquinolones is mainly related to alterations in DNA gyrase. However, strains cross resistant to fluoroquinolones and imipenem have been selected in vitro and in vivo with fluoroquinolones. We investigated the mechanisms of resistance to fluoroquinolones in 30 clinical strains of P. aeruginosa resistant to ciprofloxacin (mean MIC, >8 micrograms/ml), 20 of which were also resistant to imipenem (mean MIC, >16 micrograms/ml). By immunoblotting, OprD levels were markedly decreased in all of the imipenem-resistant strains. Plasmids carrying the wild-type gyrA gene (pPAW207) or gyrB gene (pPBW801) of Escherichia coli were introduced into each strain by transformation. MICs of imipenem did not change after transformation, whereas those of ciprofloxacin and sparfloxacin dramatically decreased (25- to 70-fold) for all of the strains. For 28 of them (8 susceptible and 20 resistant to imipenem), complementation was obtained with pPAW207 but not with pPBW801. After complementation, the geometric mean MICs of ciprofloxacin and sparfloxacin (MICs of 0.3 microgram/ml and 0.5 microgram/ml, respectively) were as low as those for wild-type strains. Complementation was obtained only with pPBW801 for one strain and with pPAW207 and pPBW801 for one strain highly resistant to fluoroquinolones. These results demonstrate that in clinical practice, gyrA mutations are the major mechanism of resistance to fluoroquinolones even in the strains of P. aeruginosa resistant to imipenem and lacking OprD, concomitant resistance to these drugs being the result of the addition of at least two independent mechanisms.  相似文献   

2.
gyrA and parC mutations have been identified inn Streptococcus pneumoniae mutants stepwise selected for resistance to sparfloxacin, an antipneumococcal fluoroquinolone. GyrA mutations (at the position equivalent to resistance hot spot Ser-83 in Escherichia coli GyrA) were found in all 17 first-step mutants examined and preceded DNA topoisomerase IV parC mutations (at Ser-79 or Glu-83), which appeared only in second-step mutants. The targeting of gyrase by sparfloxacin in S. pneumoniae but of topoisomerase IV by ciprofloxacin indicates that target preference can be altered by changes in quinolone structure.  相似文献   

3.
Mycoplasma hominis mutants were selected stepwise for resistance to ofloxacin and sparfloxacin, and their gyrA, gyrB, parC, and parE quinolone resistance-determining regions were characterized. For ofloxacin, four rounds of selection yielded six first-, six second-, five third-, and two fourth-step mutants. The first-step mutants harbored a single Asp426-->Asn substitution in ParE. GyrA changes (Ser83-->Leu or Trp) were found only from the third round of selection. With sparfloxacin, three rounds of selection generated 4 first-, 7 second-, and 10 third-step mutants. In contrast to ofloxacin resistance, GyrA mutations (Ser83-->Leu or Ser84-->Trp) were detected in the first-step mutants prior to ParC changes (Glu84-->Lys), which appeared only after the second round of selection. Further analysis of eight multistep-selected mutants of M. hominis that were previously described (2) revealed that they carried mutations in ParE (Asp426-->Asn), GyrA (Ser83-->Leu) and ParE (Asp426-->Asn), GyrA (Ser83-->Leu) and ParC (Ser80-->Ile), or ParC (Ser80-->Ile) alone, depending on the fluoroquinolone used for selection, i.e., ciprofloxacin, norfloxacin, ofloxacin, or pefloxacin, respectively. These data indicate that in M. hominis DNA gyrase is the primary target of sparfloxacin whereas topoisomerase IV is the primary target of pefloxacin, ofloxacin, and ciprofloxacin.  相似文献   

4.
Fluoroquinolone-resistant mutants of Mycoplasma hominis were selected in vitro from the PG21 susceptible reference strain either by multistep selection on increasing concentrations of various fluoroquinolones or by one-step selection on agar medium with ofloxacin. The quinolone resistance-determining regions (QRDR) of the structural genes encoding the A and b subunits of DNA gyrase were amplified by PCR, and the nucleotide sequences of eight multistep-selected resistant strains were compared to those of susceptible strain PG21. Four high-level resistant mutants that were selected on norfloxacin or ofloxacin contained a C-to-T transition in the gyrA QRDR, leading to substitution of Ser-83 by Leu in the GyrA protein. Analysis of the sequence of the gyrB QRDR of the eight multistep-selected mutants did not reveal any difference compared to that of the gyrB QRDR of the reference strain M. hominis PG21. Similar analyses of eight one-step-selected mutants did not reveal any base change in the gyrA and gyrB QRDRs. These results suggest that in M. hominis, like in other bacterial species, a gyrA mutation at Ser-83 is associated with fluoroquinolone resistance.  相似文献   

5.
Mutants of wild-type Streptococcus pneumoniae IID553 with mutations in parC were obtained by selection with trovafloxacin, levofloxacin, norfloxacin, and ciprofloxacin. All of the parC mutants were cross-resistant to the selecting agents but were not resistant to gatifloxacin and sparfloxacin. On the other hand, gyrA mutants were isolated by selection with gatifloxacin and sparfloxacin. The gyrA mutants were cross-resistant to gatifloxacin and sparfloxacin but were not resistant to the other fluoroquinolones tested. These results suggest that in wild-type S. pneumoniae the primary target of trovafloxacin, levofloxacin, norfloxacin, and ciprofloxacin is topoisomerase IV, whereas the primary target of gatifloxacin and sparfloxacin is DNA gyrase.  相似文献   

6.
Alternate mutations in the grlA and gyrA genes were observed through the first- to fourth-step mutants which were obtained from four Staphylococcus aureus strains by sequential selection with several fluoroquinolones. The increases in the MICs of gatifloxacin accompanying those mutational steps suggest that primary targets of gatifloxacin in the wild type and the first-, second-, and third-step mutants are wild-type topoisomerase IV (topo IV), wild-type DNA gyrase, singly mutated topo IV, and singly mutated DNA gyrase, respectively. Gatifloxacin had activity equal to that of tosufloxacin and activity more potent than those of norfloxacin, ofloxacin, ciprofloxacin, and sparfloxacin against the second-step mutants (grlA gyrA; gatifloxacin MIC range, 1.56 to 3.13 microg/ml) and had the most potent activity against the third-step mutants (grlA gyrA grlA; gatifloxacin MIC range, 1.56 to 6.25 microg/ml), suggesting that gatifloxacin possesses the most potent inhibitory activity against singly mutated topo IV and singly mutated DNA gyrase among the quinolones tested. Moreover, gatifloxacin selected resistant mutants from wild-type and the second-step mutants at a low frequency. Gatifloxacin possessed potent activity (MIC, 0.39 microg/ml) against the NorA-overproducing strain S. aureus NY12, the norA transformant, which was slightly lower than that against the parent strain SA113. The increases in the MICs of the quinolones tested against NY12 were negatively correlated with the hydrophobicity of the quinolones (correlation coefficient, -0.93; P < 0.01). Therefore, this slight decrease in the activity of gatifloxacin is attributable to its high hydrophobicity. Those properties of gatifloxacin likely explain its good activity against quinolone-resistant clinical isolates of S. aureus harboring the grlA, gyrA, and/or norA mutations.  相似文献   

7.
The MICs of ofloxacin for 743 strains of Escherichia coli isolated from 1988 to 1994 were determined by testing. The strains were from patients with urinary tract infections complicated by functional or anatomical disorders of the urinary tract. Those determined to be ofloxacin resistant (MIC, > or =12.5 microg/ml) comprised 3 of 395 strains (1.3%) from the 1988 to 1990 group, 2 of 166 strains (1.2%) from the 1991 to 1992 group, and 7 of 182 strains (3.8%) from the 1993 to 1994 group. The incidence of resistant strains increased significantly during this period. The percentage of isolates with moderately decreased susceptibilities to ofloxacin (MIC, 0.39 to 3.13 microg/ml) also rose during the same period. To determine the incidence of gyrA mutations in urinary-tract-derived strains of E. coli, we developed a simple and rapid assay based on PCR amplification of the region of the gyrA gene containing the mutation sites followed by digestion of the PCR product with a restriction enzyme. Using this assay, we examined all 182 strains isolated in 1993 and 1994 for the presence of mutations at Ser-83 and Asp-87 in the gyrA gene. Of these strains, 33 (18.1%) had mutations in the gyrA gene. The incidences of mutations at Ser-83, at Asp-87, and at both codons were 10.4 (19 strains), 4.4 (8 strains), and 3.3% (6 strains), respectively. To determine the correlation of the mutations in the gyrA gene with susceptibilities to quinolones (nalidixic acid, ofloxacin, norfloxacin, and ciprofloxacin), we further examined 116 strains for which the MICs of ofloxacin were > or =0.2 microg/ml that were chosen from the isolates in the 1988 to 1992 group. The MICs of nalidixic acid for the strains without mutations at either Ser-83 or Asp-87 were < or =25 microg/ml, whereas those for the strains with single mutations or double mutations were from 50 to >800 microg/ml. For the fluoroquinolones, significant differences in the distributions of the MICs were observed among the strains without mutations, with single mutations, and with double mutations. The accumulation of mutations in the gyrA gene was associated with an increase in fluoroquinolone resistance. Ofloxacin MICs for the majority of the strains with single and double mutations were 0.39 to 3.13 and 6.25 to 100 microg/ml, respectively. This study demonstrates a chronological increase in the percentage of not only highly fluoroquinolone-resistant strains, corresponding to those with double mutations in the gyrA gene, but also strains with moderately decreased susceptibilities to fluoroquinolones, corresponding to those with single mutations. This increase in the incidence of strains with a single mutation in the gyrA gene portends a further increase in the incidence of strains with clinically significant resistance to fluoroquinolones.  相似文献   

8.
Quinolone-resistant Escherichia coli strains were isolated from poultry clinical samples in Saudi Arabia. The poultry flocks had been treated with oxolinic acid or flumequine prophylaxis. The measure of the uptake of fluoroquinolones showed that none of the strains had a reduced accumulation of quinolones. The result of complementation with the wild-type E. coli gyrA gene, which restored fluoroquinolone susceptibility, and the isolation of DNA gyrase from six isolates indicated that the resistant strains had an altered DNA gyrase. The minimum effective dose of ciprofloxacin for inhibition of supercoiling catalyzed by the isolated gyrases varied from 0.085 microgram/ml for a susceptible isolate (MIC < 4 micrograms/ml) up to 96 micrograms/ml for the more resistant one (strain 215, MIC > 64 micrograms/ml). For the same two isolates, the minimum effective doses of sparfloxacin varied from 0.17 up to 380 micrograms/ml. The in vitro selection of spontaneous single-step fluoroquinolone-resistant mutants using ciprofloxacin suggested that the more resistant mutants are likely the result of several mutations. These results also show that, as in human medicine, cross-resistance between older quinolones and fluoroquinolones can exist in veterinary isolates and reiterate the need for the prudent use of these drugs.  相似文献   

9.
To evaluate the role of known topoisomerase IV and gyrase mutations in the fluoroquinolone (FQ) resistance of Streptococcus pneumoniae, we transformed susceptible strain R6 with PCR-generated fragments encompassing the quinolone resistance-determining regions (QRDRs) of parC or gyrA from different recently characterized FQ-resistant mutants. Considering the MICs of FQs and the GyrA and/or ParC mutations of the individual transformants, we found three levels of resistance. The first level was obtained when a single target, ParC or GyrA, depending on the FQ, was modified. An additional mutation(s) in a second target, GyrA or ParC, led to the second level. The highest increases in resistance levels were seen for Bay y3118 and moxifloxacin with the transformant harboring a double mutation in both ParC and GyrA. When a single modified target was considered, only the ParC mutation(s) led to an increase in the MICs of pefloxacin and trovafloxacin. In contrast, the GyrA or ParC mutation(s) could lead to increases in the MICs of ciprofloxacin, sparfloxacin, grepafloxacin, Bay y3118, and moxifloxacin. These results suggest that the preferential target of trovafloxacin and pefloxacin is ParC, whereas either ParC or GyrA may both be initial targets for the remaining FQs tested. The contribution of the ParC and GyrA mutations to efflux-mediated FQ resistance was also examined. Active efflux was responsible for two- to fourfold increases in the MICs of ciprofloxacin for the transformants, regardless of the initial FQ resistance levels of the recipients.  相似文献   

10.
Antimicrobial susceptibility testing revealed among 150 clinical isolates of Streptococcus pneumoniae 4 pneumococcal isolates with resistance to fluoroquinolones (MIC of ciprofloxacin, >/=32 microgram/ml; MIC of sparfloxacin, >/=16 microgram/ml). Gene amplification and sequencing analysis of gyrA and parC revealed nucleotide changes leading to amino acid substitutions in both GyrA and ParC of all four fluoroquinolone-resistant isolates. In the case of strains 182 and 674 for which sparfloxacin MICs were 16 and 64 microgram/ml, respectively, nucleotide changes were detected at codon 81 in gyrA and codon 79 in parC; these changes led to an Ser-->Phe substitution in GyrA and an Ser-->Phe substitution in ParC. Strains 354 and 252, for which sparfloxacin MICs were 128 microgram/ml, revealed multiple mutations in both gyrA and parC. These strains exhibited nucleotide changes at codon 85 leading to a Glu-->Lys substitution in GyrA, in addition to Ser-79-->Tyr and Lys-137-->Asn substitutions in ParC. Moreover, strain 252 showed additional nucleotide changes at codon 93, which led to a Trp-->Arg substitution in GyrA. These results suggest that sparfloxacin resistance could be due to the multiple mutations in GyrA and ParC. However, it is possible that other yet unidentified mutations may also be involved in the high-level resistance to fluoroquinolones in S. pneumoniae.  相似文献   

11.
The gyrA gene of Campylobacter fetus subsp. fetus, which encodes the A subunit of DNA gyrase, was cloned, and its nucleotide sequence was determined. An open reading frame of 2,586 nucleotides which encodes a polypeptide of 862 amino acids with an Mr of 96,782 was identified. C. fetus subsp. fetus GyrA is most closely related to Campylobacter jejuni GyrA, with 73% homology at the nucleotide level and 78% identity between polypeptides. The next most closely related GyrA was that from Helicobacter pylori, with both DNA homology and amino acid identity of 63%. The gyrA and gyrB (DNA gyrase B subunit) genes were located on the genomic map of C. fetus subsp. fetus ATCC 27374 and shown to be separate. A clinical isolate of C. fetus subsp. fetus and a laboratory-derived mutant of ATCC 27374, both resistant to ciprofloxacin, had identical mutations within the quinolone resistance determining region. In both mutants a G-->T transversion, corresponding to a substitution of Asp-91 to Tyr in GyrA, was linked to ciprofloxacin resistance, giving MICs of 8 to 16 micrograms/ml.  相似文献   

12.
Fluoroquinolones trap gyrase on DNA as bacteriostatic complexes from which lethal DNA breaks are released. Substituents at the C-8 position increase activities of N-1-cyclopropyl fluoroquinolones against several bacterial species. In the present study, a C-8-methoxyl group improved bacteriostatic action against gyrA (gyrase-resistant) strains of Mycobacterium tuberculosis and M. bovis BCG. It also enhanced lethal action against gyrase mutants of M. bovis BCG. When cultures of M. smegmatis, M. bovis BCG, and M. tuberculosis were challenged with a C-8-methoxyl fluoroquinolone, no resistant mutant was recovered under conditions in which more than 1, 000 mutants were obtained with a C-8-H control. A C-8-bromo substituent also increased bacteriostatic and lethal activities against a gyrA mutant of M. bovis BCG. When lethal activity was normalized to bacteriostatic activity, the C-8-methoxyl compound was more bactericidal than its C-8-H control, while the C-8-bromo fluoroquinolone was not. The C-8-methoxyl compound was also found to be more effective than the C-8-bromo fluoroquinolone at reducing selection of resistant mutants when each was compared to a C-8-H control over a broad concentration range. These data indicate that a C-8-methoxyl substituent, which facilitates attack of first-step gyrase mutants, may help make fluoroquinolones effective antituberculosis agents.  相似文献   

13.
PURPOSE: To investigate the development of fluoroquinolone resistance among Neisseria gonorrhoeae isolates in Japan and the frequency and patterns of mutations involving the GyrA and ParC proteins, which confer quinolone resistance to the bacteria, in isolates. MATERIALS AND METHODS: Antimicrobial susceptibilities of 145 gonococcal isolates, including 79 isolated from February 1992 through February 1993 and 66 isolated from February 1995 through February 1996, to six fluoroquinolones and several other antibiotics were compared with those of 27 isolates obtained from 1981 through 1984. To identify mutations in gyrA and parC genes of the isolates, the quinolone resistance-determining regions of the gyrA and parC genes were PCR-amplified and the PCR products were directly sequenced. RESULTS: The minimum inhibitory concentration for 90% of strains (MIC90) values of norfloxacin for the isolates from 1992 to 93 (4 microg./ml.) and 1995 to 96 (8 microg./ml.) were 16- and 32-fold, respectively, higher than those for isolates from 1981 to 84 (0.25 microg./ml.). The MIC90 values of ciprofloxacin for isolates from 1992 to 93 (0.5 microg./ml.) and 1995 to 96 (1 microg./ml.) showed increase of 8- and 16-fold, respectively, in comparison with those from 1981 to 84 (0.063 microg./ml.). The isolates from 1992 to 93 and 1995 to 96 were also less susceptible to newer fluoroquinolones including levofloxacin, sparfloxacin, DU-6859a and AM-1155, as compared with those from 1981 to 84. In 46 (67.6%) and 16 (23.5%) of the 68 gonococcal strains sequenced, GyrA and ParC mutations were identified, respectively. No ParC substitutions were identified in any isolates without co-existence of the GyrA mutation. A Ser-91 to Phe mutation, which was detected in 30 (65.2%) of the 46 isolates with GyrA mutations, was the most common GyrA mutation. Mutants with the single Ser-91 to Phe substitution in GyrA were 12-fold and at least 13-fold, respectively, less susceptible to norfloxacin and ciprofloxacin than the wild type. CONCLUSIONS: The results obtained in this study suggest that a high prevalence of gonococcal isolates with the Ser-91 to Phe mutation in GyrA has reduced the susceptibility of this organism to fluoroquinolones in Japan.  相似文献   

14.
To investigate emerging fluoroquinolone resistance in Neisseria gonorrhoeae isolated in Japan, we compared the in vitro antimicrobial susceptibilities of 79 gonococcal isolates from 1992 through 1993 to 14 fluoroquinolones and 14 other antibiotics with those of 27 isolates from between 1981 and 1984. The MICs at which 90% of the isolates were inhibited by nine fluroquinolones, including norfloxacin, enoxacin, ofloxacin, ciprofloxacin, tosufloxacin, lomefloxacin, fleroxacin, levofloxacin, and sparfloxacin, for isolates from 1992 to 1993 were 8- or 16-fold higher than those for isolates from 1981 to 1984. Furthermore, the MICs at which 90% of the isolates were inhibited by five fluroquinolones, including OPC-17116, T-3761, DU-6859a, AM-1155, and Q-35, that have recently been synthesized but have not yet been introduced for clinical use in Japan for isolates from 1992 to 1993 were also 2- to 16-fold higher than those for isolates from 1981 to 1984. The gonococcal isolates from 1992 to 1993 showed no significant decreases in susceptibility to beta-lactams, tetracyclines, macrolides, and spectinomycin, compared with those for isolates from 1981 to 1984. Our data indicate that the incidence of gonococcal strains with decreased susceptibilities to fluoroquinolones is increasing in Japan.  相似文献   

15.
Fluoroquinolone efflux was studied in 47 Staphylococcus aureus clinical strains with MICs of ciprofloxacin (CFX) of < or = 2 micrograms/ml. Forty-three strains were wild type for gyrA, gyrB, and grlA quinolone resistance-determining regions and for norA and its promoter region. Forty of these strains (MICs of CFX, 0.1 to 0.2 microgram/ml) did not show efflux of fluoroquinolones. Three strains (MICs of CFX, 1 to 2 micrograms/ml) showed efflux. These results suggest that efflux can appear in S. aureus clinical strains in the absence of mutations in norA and its promoter.  相似文献   

16.
We have analyzed by gene amplification and sequencing mutations in the quinolone resistance-determining regions of the gyrA, gyrB, and parC genes of fluoroquinolone-resistant Streptococcus pneumoniae mutants obtained during therapy or in vitro. Mutations leading to substitutions in ParC were detected in the two mutants obtained in vivo, BM4203-R (substitution of a histidine for an aspartate at position 84 [Asp-84-->His]; Staphylococcus aureus coordinates) and BM4204-R (Ser-80-->Phe), and in two mutants obtained in vitro (Ser-80-->Tyr). An additional mutant obtained in vitro, BM4205-R3, displayed a higher level of fluoroquinolone resistance and had a mutation in gyrA leading to a Ser-84-->Phe change. We could not detect any mutation in the three remaining mutants obtained in vitro. Total DNA from BM4203-R, BM4204-R, and BM4205-R3 was used to transform S. pneumoniae CP1000 by selection on fluoroquinolones. For the parC mutants, transformants with phenotypes indistinguishable from those of the donors were obtained at frequencies (5 x 10(-3) to 8 x 10(-3)) compatible with monogenic transformation. By contrast, transformants were obtained at a low frequency (4 x 10(-5)), compatible with the transformation of two independent genes, for the gyrA mutant. Resistant transformants of CP1000 were also obtained with an amplified fragment of parC from BM4203-R and BM4204-R but not with a gyrA fragment from BM4205-R3. All transformants had mutations identical to those in the donors. These data strongly suggest that ParC is the primary target for fluoroquinolones in S. pneumoniae and that BM4205-R3 is resistant to higher levels of the drugs following the acquisition of two mutations, including one in gyrA.  相似文献   

17.
The fluoroquinolones have an established role in treatment of infection with aerobic gram negative rods. The increased importance of gram positive nosocomial infection and of acquired fluoroquinolone resistance has stimulated a search for new compounds with enhanced potency and spectrum. CP-99,219 is a novel compound in this class with enhanced activity against gram positive organisms. We have studied the activity of CP-99,219 relative to ciprofloxacin, fleroxacin, ofloxacin, and sparfloxacin using test panels of organisms with a high proportion of ciprofloxacin resistance. CP-99,219 is more potent than any of the other four compounds against both gram positive and gram negative bacteria. The activity of CP-99,219 against many bacteria resistant to the established agents, warrants further in vitro and clinical studies.  相似文献   

18.
Twelve clinical isolates of Acinetobacter baumannii highly resistant to pefloxacin (MIC > or = 32 mg/L) and to ciprofloxacin (MIC > or = 16 mg/L), were studied. A susceptible isolate used as a reference (MIC of 0.032 and 0.25 mg/L for ciprofloxacin and pefloxacin, respectively) accumulated 85 mg of pefloxacin per litre of cell volume within 10 min, from a solution containing 10 mg/L of antibiotic. One resistant isolate accumulated the same amount of pefloxacin, while the 11 others accumulated between 40 and 70 mg/L of cell volume. The differences between reference and resistant isolates with respect to ciprofloxacin and sparfloxacin accumulation were less pronounced. There were no apparent differences in the outer membrane protein profiles of susceptible and resistant isolates. DNA gyrase was isolated from four A. baumannii and the minimum concentration of fluoroquinolones, required to inhibit gyrase-catalysed supercoiling of plasmid DNA was 5- to 80-fold higher for the resistant isolates than for the reference strain. Although most isolates showed some degree of reduced fluoroquinolone accumulation, a DNA gyrase mutation was more likely to be the main mechanism of the high level resistance encountered.  相似文献   

19.
We have determined partial sequences of the gyrA and parC genes of Enterobacter cloacae type strain including the regions analogous to the quinolone resistance-determining region of the Escherichia coli gyrA gene. The deduced 65- and 49-amino acid sequences of the determined regions of the E. cloacae gyrA and parC genes were identical to the corresponding regions of the E. coli GyrA and ParC proteins, respectively. We examined 40 clinical strains of E. cloacae isolated from patients with urinary tract infection for susceptibilities to nalidixic acid and ciprofloxacin. Based on the nalidixic acid and ciprofloxacin MICs, these isolates were divided into 19 quinolone-susceptible strains (MICs of nalidixic acid, 3.13-25 mg/L; MICs of ciprofloxacin, < or = 0.025 mg/L) and 21 quinolone-resistant strains (MICs of nalidixic acid, 400 to > 800 mg/L; MICs of ciprofloxacin, 0.39-100 mg/L). We analysed five quinolone-susceptible and 21 quinolone-resistant strains for alterations in GyrA and ParC. The five quinolone-susceptible strains had amino acid sequences in GyrA and ParC identical to those of type strain. Of the 21 quinolone-resistant isolates, three (MICs of nalidixic acid, 400 to > 800 mg/L; MICs of ciprofloxacin, 0.39-3.13 mg/L) had a single amino acid change at the position equivalent to Ser-83 in the E. coli GyrA protein and no alterations in ParC; one (MIC of nalidixic acid, > 800 mg/L; MIC of ciprofloxacin, 3.13 mg/L) had a single amino acid change at Ser-83 in GyrA and a single amino acid change at the position equivalent to Glu-84 in the E. coli ParC protein; two (MIC of nalidixic acid, > 800 mg/L; MIC of ciprofloxacin, 25 mg/L) had double amino acid changes at Ser-83 and Asp-87 in GyrA and no alterations in ParC; and 15 (MICs of nalidixic acid, > 800 mg/L; MICs of ciprofloxacin, 25-100 mg/L) had double amino acid changes at Ser-83 and Asp-87 in GyrA and a single amino acid change at Ser-80 or Glu-84 in ParC. This study suggests, that in clinical isolates of E. cloacae, DNA gyrase is a primary target of quinolones, that only a single amino acid change at Ser-83 in GyrA is sufficient to generate high-level resistance to nalidixic acid and to decrease susceptibility to ciprofloxacin, and that the accumulation of amino acid changes in GyrA and the simultaneous presence of the ParC alterations play a central role in developing high-level resistance to ciprofloxacin.  相似文献   

20.
BACKGROUND: Infections caused by Streptococcus pneumoniae continue to be a significant cause of mortality and morbidity in humans. Diseases caused by multi-resistant pneumococci are increasing rapidly worldwide. The fluoroquinolones have been widely used clinically to treat infectious diseases. The results of a study here on the five fluoroquinolones susceptibilities of S. pneumoniae are reported from the Taichung Veterans General Hospital. METHODS: Minimum inhibitory concentrations (MICs) of five quinolones (enoxacin, norfloxacin, ofloxacin, levofloxacin and ciprofloxacin) were determined for 106 strains of S. pneumoniae. All MICs were determined by the agar dilution method utilizing Mueller-Hinton agar supplemented with 5% sheep blood. RESULTS: MIC90 of levofloxacin was 1 microgram/ ml, and was unaffected by penicillin-susceptibility. MIC90 of ofloxacin and that of ciprofloxacin were 2 and 4 micrograms/ml, respectively, with 90.6% sensitive to ofloxacin. MIC90 of enoxacin and that of norfloxacin were higher than other compounds. CONCLUSIONS: The in vitro activity of levofloxacin is twice that of ofloxacin, 4-fold of ciprofloxacin, 16-fold of norfloxacin, and 64-fold of enoxacin. MICs of these five quinolones were unaffected by penicillin-susceptibility. The antibacterial activity of levofloxacin was better than that of ofloxacin and ciprofloxacin, norfloxacin, or enoxacin against S. pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号