首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface soil, the vadose zone, and ground water can present serious environmental problems. The processes governing the release and transformation of RDX into soils and the aquatic environment are not well understood. The objective of this study was to determine the effects of differing environmental conditions as reflected by redox potential and pH on the fate of RDX in soil. Laboratory investigations consisted of testing three redox potentials and four pH levels in an 18:1 (2,600 m3 water:150 g soil) suspension spiked with 10 mg∕L RDX. Results indicated that RDX was unstable under highly reducing conditions (?150 mV) and relatively stable over the short term (15 days) under oxidizing and moderately reducing conditions at all pH values. RDX in areas of intense reduction would not persist. However, RDX deposited or moving into areas under moderately reducing or oxidizing conditions would be highly mobile and persistent.  相似文献   

2.
Advanced oxidation of simazine in aqueous solution by the peroxone (hydrogen peroxide/ozone) treatment was investigated using Box-Behnken statistical experiment design and response surface methodology. Effects of pH, simazine and H2O2 concentrations on percent simazine and total organic carbon (TOC) removals were investigated. Ozone concentration was kept constant at 45?mg?L?1. The optimum conditions yielding the highest simazine and TOC removals were also determined. Both simazine and peroxide doses affected simazine removal while pH and pesticide dose had more pronounced effect on mineralization (TOC removal) of simazine. Nearly 95% removal of simazine was achieved within 5 min for simazine and peroxide concentrations of 2.0 and 75?mg?L?1, respectively at pH = 7. However, mineralization of simazine was not completed even after 60 min at simazine doses above 2?mg?L?1 indicating formation of some intermediate compounds. The optimum H2O2/pH/Simazine ratio resulting in maximum pesticide (94%) and TOC removal (82%) was found to be 75/11/0.5(mg?L?1).  相似文献   

3.
The objective of this study was to assess the effectiveness of alkaline hydrolysis as an alternative ex situ technology for remediating groundwater contaminated with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Treatment in both batch reactor and continuous stirred tank reactor (CSTR) was investigated. RDX reactivity was strongly dependent on the reaction pH investigated (11–13). The batch system achieved pseudo-first-order RDX reaction rates in the range of (0.8–27.7)×10?3?min?1, corresponding to half-life periods of 17.9?to?0.5?h, respectively. In the CSTR system operated at the initial RDX concentration of 4.5×10?3?mM, 99% RDX removal was achieved with the hydraulic retention time of 2?days and the reaction pH of 11.9. Formate and nitrite were produced as the major hydrolysates in the CSTR system, indicating a simultaneous reaction mechanism involving RDX ring cleavage and elimination of the ring nitrogen. The net OH? demand used only for RDX removal in the CSTR was found to be 1.5, 390, and 130?M OH?/M RDXremoved at pH values of 11.9, 11.5, and 11.0, respectively. A conceptual cost analysis indicated that the expense of alkaline treatment may be comparable to the expense of granular activated carbon treatment for long treatment periods (30?years or more), due to the potentially lower annual operational cost of alkali treatment.  相似文献   

4.
The reduction kinetics of two explosives, 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), by Fe(II) was investigated in aqueous systems. A dilute ferrous iron solution effectively reduces these nitroaromatic (NAC) and nitramine (NAM) compounds between pH 6.75 and 9.2. Observed reaction rates are first order in monohydroxl and dihydroxyl ferrous iron [FeOH+ or Fe(OH)20], and NAC/NAM concentrations. The reaction does not require the presence of a mediating surface. Intrinsic rate constants for TNT and RDX reduction by monohydroxyl ferrous iron are 2.00(±0.17)E+09 and 2.04(±0.24)E+06?M?2?s?1, respectively. The reduction half-lives at neutral pH were on the order of minutes for TNT and hours for RDX, yielding rates faster than any known natural process or current bioremediation technique. The use of a mobile reductant, such as hydroxyl-complexed Fe(II) or other aqueous Fe(II) complexes, for NAC/NAMs could be an effective remediation technique at contaminated sites.  相似文献   

5.
Removal of Lead from Contaminated Water and Clay Soil Using a Biosurfactant   总被引:2,自引:0,他引:2  
Lead removal from water and contaminated soils was investigated using biosurfactant, anionic, and nonionic surfactants in continuously stirred batch reactors. Lead-contaminated water up to 100?mg/L and clay soil up to 3,000?mg/kg were used in this investigation. The surfactant concentration up to 10 critical micelle concentration was used. The speciation of lead into the micelles was quantified and the lead removal efficiency depended on the level of contamination, surfactant type, and concentration. Of the surfactants used, biosurfactant (produced from used vegetable oil) had the best removal efficiency (75%) at a lead contamination of 100?mg/L in water at pH of over 12. The Fourier-transformed infrared spectroscopy study showed that the carboxyl group in the biosurfactant was effective in removing the lead from the solution. Langmuir and Freundlich relationships were used to represent the micelle partitioning of lead in the surfactant solutions. Desorption of lead from contaminated kaolinite clay was represented using linear isotherms. The biosurfactant solution had a higher micelle partitioning for the lead from contaminated water and desorbing the lead from the contaminated soil compared to the other chemical surfactants.  相似文献   

6.
The feasibility of using advanced oxidation processes (AOPs): ozone, ozone/sonification, and ozone/ultraviolet (UV) irradiation in treatment to remove heavy metals and ethylenediamine tetraacetate (EDTA) from aqueous extracts, obtained after soil extraction with EDTA, was examined. Extraction of soil contaminated with 1,243?mg?kg?1 Pb and 1,190?mg?kg?1 Zn with 40?mmol?kg?1 EDTA removed 41.8±0.9 and 7.2±.0.2% of Pb and Zn. Of the AOPs tested, only the use of ozone/UV enabled the decomposition of EDTA–heavy metals complexes in aqueous soil extracts, and recovery of released Pb and Zn by sorption on a commercial sorbent Slovakite. After treatment, the concentration of Pb, Zn, and EDTA in the extracts was fairly low (2.87±1.15?mg?L?1, 7.58±2.12?mg?L?1, and 0.012±0.002?mmol?L?1, respectively), and could presumably be reduced even further with a continuation of treatment. The treated extract was used for subsequent soil rinsing, which removed an additional 12.7±1.6 and 2.7±0.1% of soil Pb and Zn. The results of our study indicate that the use of ozone/UV is a feasible option for treatment of aqueous soil extracts from EDTA extraction. Treated extracts could be safely discharged or reused to lower requirements for process water.  相似文献   

7.
A mixed microbial culture capable of metabolizing the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) was obtained from soil enrichments under aerobic and nitrogen-limiting conditions. A bacterium, Stenotrophomonas maltophilia PB1, isolated from the culture used RDX as a sole source of nitrogen for growth. Three moles of nitrogen was used per mole of RDX, yielding a metabolite identified by mass spectroscopy and 1H nuclear magnetic resonance analysis as methylene-N-(hydroxymethyl)-hydroxylamine-N'-(hydroxymethyl)nitroamin e. The bacterium also used s-triazine as a sole source of nitrogen but not the structurally similar compounds octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, cyanuric acid, and melamine. An inducible RDX-degrading activity was present in crude cell extracts.  相似文献   

8.
A laboratory scale sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system was operated to investigate the effect of increasing nitrobenzene (NB) concentrations on the performance of AMBR/CSTR reactor system. The reactor system was operated at increasing NB loading rates from 1.93?to?38.54?g?NB?m?3?day?1 and at a constant hydraulic retention time of 10.38?days. In this study, chemical oxygen demand (COD) and NB removal efficiencies, variations of bicarbonate alkalinity (Bic.Alk.), total volatile fatty acid (TVFA), and total methane gases were monitored. COD removal efficiencies were 93–94% until a NB loading rate of 5.78?g?m?3?day?1 in the AMBR reactor. For maximum COD removal, the optimum NB loading rate and NB concentration were found to be 5.78?g?m?3?day?1 and 60?mg?L?1, respectively. COD removal efficiencies decreased from 94 to 87% and to 85% at NB loading rates of 1.93–28.90 and 38.54?g?m?3?day?1, respectively. COD was mainly removed in the first compartment. NB removal efficiencies also were approximately 100% at all NB loading rates in the effluent of the AMBR reactor. The maximum total gas and methane gas productions were found to be 2.8?L?day?1 and 1.3?mL?day?1, respectively, at a NB loading rate of 5.78?g?m?3?day?1. The TVFA concentration in the effluent of AMBR was low (17?mg?L?1) at a NB loading rate as high as 38.54?g?m?3?day?1. Overall COD removal efficiencies were found to be 99 and 96% at NB loading rates of 1.93 and 38.54?g?m?3?day?1, respectively, in a sequential AMBR/CSTR reactor system. In this study, NB was reduced to aniline under anaerobic conditions. Aniline removal efficiencies were 100% until a NB loading rate of 17.34?g?m?3?day?1 in aerobic CSTR reactor while aniline removal efficiency decreased to 90% at a NB loading rate of 38.54?g?m?3?day?1 in an aerobic reactor. In the aerobic step, aniline was mineralized to catechol. The contribution of aerobic step is not only the degradation of aniline, it may also increase the COD removals from 85 to 99% at a NB loading rate as high as 38.54?g?m?3?day?1.  相似文献   

9.
This study investigates the aqueous degradation of four iodinated x-ray contrast media (ICM) compounds (diatrizoate, iomeprol, iopromide, and iopamidol) by ozone and combined ozone and hydrogen peroxide. In laboratory scale experiments, second-order kinetic rate constants for the reactions of the ICM compounds with molecular ozone and hydroxyl radicals, and overall at pH 7.5, were determined. For the four ICM compounds the degradation rate constants with molecular ozone were low and in the range of 1–20?M?1?s?1, whereas the rate constants with hydroxyl radicals were in the range of 1×109–3×109?M?1?s?1. Diatrizoate had the lowest rate constant of the four compounds with respect to molecular ozone reactions. At pH 7.5, the extent of compound degradation was proportional to the applied ozone dose and inversely related to the initial compound concentration at a given ozone dose. At this pH approximately 90% of the degradation could be attributed to hydroxyl radical reactions. Enhancement of the radical mechanism by the addition of hydrogen peroxide during ozonation led to complete removal of the nonionic compounds, and >80% removal of diatrizoate, at relatively low oxidant mass ratios (H2O2/O3<0.25). A similar enhancement in compound degradation was evident with the presence of small concentrations of humic substances ( ~ 4–5?mg?L?1). Ozone oxidation led to major cleavage of the ICM compounds and the release of inorganic iodine; the proportion of iodine release was similar among the nonionic ICM compounds but much greater for diatrizoate.  相似文献   

10.
Identification of bacteria that can utilize a wide range of nitroaromatic compounds will allow development of more effective biological treatment methods in industrial wastewater treatment processes and environmental remediation efforts. A new strain of Rhodococcus opacus capable of mineralizing or transforming nitroaromatic and nitramine compounds of importance was isolated. Specifically, the bacterium were found to utilize 2,4,6-trinitrophenol (TNP) as a sole carbon and nitrogen source and have a yield coefficient of 0.16 g cells-N/g TNP-N. The Edwards model was found to provide the best fit to the data and the estimated inhibited growth parameters μmax, KS, and KI were 0.58?h?1, 25, and 112?mg/L, respectively. It was found that the TNP-degraders could degrade 2,4-dinitrophenol as the sole carbon and nitrogen source and utilize 1,3,5-trinitrobenzene as the sole nitrogen source. Additionally, the results show that the isolates are able to cometabolize 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 4-nitrophenol (4-NP), and 2,4- and 2,6-dinitrotoluene (2,4 and 2,6-DNT) to some extent when TNP is also present.  相似文献   

11.
Four sequential aerobic sludge blanket reactors, Reactors R1, R2, R3, and R4, were operated at organic loading rates (OLRs) of 1, 2, 4, and 8?kg chemical oxygen demand (COD)/m3?day, respectively. Aerobic granules were not detected at the low OLRs in R1 and R2. Aerobic granules first appeared on Day 14 in Reactor R3, operating at a moderate OLR of 4?kg COD/m3?day. Aerobic granules were initially observed on Day 18 in R4, operating at the highest OLR tested of 8?kg COD/m3?day. These granules were unstable and disintegrated within 2 weeks after their first appearance. Under the OLR of 4?kg COD/m3?day, the process of aerobic granulation could be clearly divided into three phases of acclimation, multiplication, and maturation, with specific granular growth rates (ν?) of 0.1081, ?0.0064, and ?0.0008?day?1, respectively. The values of ν? became smaller with time, and indicated that the aerobic granules had stabilized. Compared to the looser and more amorphous flocs, the compact granules in Reactor R3 possessed a higher specific gravity of 1.064, a higher strength with an integrated coefficient of 99.5%, a higher cell surface hydrophobicity of 75%, and a higher ratio of polysaccharides (PS) to proteins (PN) at 5.0?mg PS per mg PN.  相似文献   

12.
A pilot-scale study was conducted to evaluate an integrated system for the remediation of soils contaminated primarily with pentachlorophenol (PCP), a wood preserver. The integrated soil remediation system consisted of three unit processes: (1) Soil solvent washing; (2) solvent recovery; and (3) biotreatment of the contaminant residual. Pilot-scale countercurrent solvent washing was carried out using a 95% ethanol solution—a solvent that in an earlier bench-scale study was found to be effective in removing PCP and hydrocarbons (HCs) from soils. Three-stage countercurrent solvent washing of a field-contaminated soil was performed using batches of 7.5 kg of soil and 30 L of solvent (1 kg:4 L soil-to-solvent contact ratio). The washed soil was rinsed with water in a single stage after three countercurrent wash stages. Pilot-scale, three-stage countercurrent solvent washing with 95% ethanol reduced the PCP and HC contamination on the soil by 98 and 95%, respectively. The spent solvent and the spent rinse water were combined as the spent wash fluid for further treatment. A pilot-scale distillation unit was used to recover the ethanol from the spent wash fluid. The HC constituents of the spent wash fluid were removed by pH adjustment prior to feeding the spent wash fluid to a distillation unit. Greater than 96% of the ethanol in the spent wash fluid was recovered in the distillate stream, whereas PCP was captured in the bottoms stream. The bottoms stream was treated sequentially in anaerobic and aerobic granular-activated carbon fluidized-bed reactors. Complete mineralization of PCP was achieved using this treatment train.  相似文献   

13.
Heavy metal cadmium(II) was added stepwise into an A2O pilot plant to investigate the toxic effects of Cd(II) on the removal efficiencies, kinetic parameters (yield coefficients and maximum specific growth rates) and reaction rates of carbon, nitrogen and phosphate for the acclimatized heterotrophic and autotrophic bacteria. Results showed that 2?mg/L Cd(II) initially affected the biological reaction of phosphate removal. At Cd(II) 5?mg/L, the efficiencies of total nitrogen removal and nitrification were substantially dropped. At the same time, the yield coefficient and maximum specific growth rate of heterotrophs were significantly decreased from 0.8?g?COD/g?COD and 6.44?day?1 to 0.54?g?COD/g?COD and 4.67?day?1, respectively. And, the denitrification rate was inhibited by about 61%. The inhibition percentages of anaerobic release, anoxic and aerobic uptake rates of phosphate were about 76, 64, and 90%, respectively. When Cd(II) concentration was continually increased up to 35?mg/L, removal efficiency of chemical oxygen demand (COD) was significantly dropped. However, there was no obvious inhibition on the biological reactions of anaerobic ammonification.  相似文献   

14.
Rock filters used to treat effluents from waste stabilization ponds do not remove ammonia as they are anoxic. A pilot-scale aerated rock filter was investigated, in parallel with an unaerated control, over an 18-month period to determine whether aeration provided conditions within the rock filter for nitrification to occur. Facultative pond effluent containing ~ 10?mg NH4–N/L was applied to the filters at a hydraulic loading rate of 0.15?m3/m3?day during the first 8?months and at 0.3?m3/m3?day thereafter. The results show that the ammonia and nitrate concentrations in the effluent from the aerated filter were <3 and ~ 5?mg?N/L, respectively, whereas the ammonia concentration in the effluent from the control filter was ~ 7?mg?N/L. Fecal coliforms were reduced in the aerated filter to a geometric mean count of 65?per?100?mL; in contrast the effluent from the control filter contained 103–104 fecal coliforms per 100?mL. Aerated rock filters are thus a useful land-saving alternative to aerobic maturation ponds.  相似文献   

15.
Aluminum industry wastes are solid residues contaminated with polycyclic aromatic hydrocarbons (PAHs) and fluorides. The aluminum industry waste used in this study contained 1,129?mg?kg?1 of benzo(b,j,k)fluoranthene. On application of toxicity characteristic leaching procedure (TCLP), a leachate containing 448?mg?L?1 of fluoride ions was obtained. The decontamination of aluminum industry wastes was carried out in cycles and included a stage of flotation, followed by stabilization and neutralization. The flotation treatment in the cell containing wastes contaminated with a concentration of 15% (w?v?1) in the presence of surfactant cocamydopropyl hydroxysultaine (0.25% w?w?1) allowed 47 to 83% removal of benzo(b,j,k) fluoranthene. The subsequent step of lime stabilization (8% w?v?1) allowed production of nonhazardous wastes. The concentration of fluoride ions resulting from the TCLP test (67?mg?L?1) remained lower than the permissible level (150?mg?L?1).  相似文献   

16.
The outcome of a 15-month monitoring study (August 2004–October 2005) on the anionic surfactants (AS), at the 38?ML/day up-flow anaerobic sludge blanket (UASB)-based sewage treatment plant (STP) is described. The average removal of AS was only around 57%. Appreciable concentration of AS was being discharged to the watercourse (average 2.41?mg/L; range 0.63–5.16?mg/L). On an average dried sludge contained 1,560?mg?AS?kg?1 dry weight. Mass balance indicated that, AS load of the orders of 23 and 33% is removed by adsorption in UASB reactors and polishing ponds (PP), respectively. Biodegradation of AS under anaerobic conditions in UASB reactors and PP does not seem to take place. In the sludge stream, appreciable biodegradation ( ≈ 70%) of adsorbed AS under aerobic conditions on the sludge drying beds takes place. If influent AS mass flux is normalized to 100?units, than 43 and 7?units are discharged with treated effluent and dried sludge, respectively, whereas 33 and 16?units are adsorbed/settled in PP and aerobically biodegrade on sludge drying beds, respectively.  相似文献   

17.
The high explosive (HE) compounds royal demolition explosive or hexahydro-1,3,5-trinitro-1,3,5-triazocine (RDX) and high melting explosive or octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) have been detected as groundwater contaminants at many military facilities. This research evaluated adsorption of RDX and HMX with granular activated carbon (GAC) to provide guidance for the design and operation of GAC adsorbers for treatment of HE-contaminated groundwater. Five GACs were screened using rapid small-scale column tests (RSSCTs), after which additional tests were performed with the two GACs that most effectively treated mixtures of RDX and HMX (Calgon F400 and Northwestern LB-830). GAC service life as a function of empty-bed contact time (EBCT) was determined using RSSCTs for a range of simulated full scale EBCTs with influent concentrations of 2,200 μg RDX/L and 350 μg HMX/L. Increasing the influent concentration of either contaminant significantly reduced the predicted service life, as did preloading GAC with groundwater natural organic matter. In batch isotherm tests, RDX was less adsorbable than HMX under all conditions studied. Concurrent loading of natural organic matter reduced the Freundlich K for RDX, whereas adsorption of HMX was not affected. Of the GACs tested, Calgon F400 most effectively removed RDX and HMX.  相似文献   

18.
Anaerobic and aerobic treatment of high-strength pharmaceutical wastewater was evaluated in this study. A batch test was performed to study the biodegradability of the wastewater, and the result indicated that a combination anaerobic-aerobic treatment system was effective in removing organic matter from the high-strength pharmaceutical wastewater. Based on the batch test, a pilot-scale system composed of an anaerobic baffled reactor followed by a biofilm airlift suspension reactor was designed. At a stable operational period, effluent chemical oxygen demand (COD) from the anaerobic baffled reactor ranged from 1,432 to 2,397?mg/L at a hydraulic retention time (HRT) of 1.25 day, and 979 to 1,749?mg/L at an HRT of 2.5 day, respectively, when influent COD ranged from 9,736 to 19,862?mg/L. As a result, effluent COD of the biofilm airlift suspension reactor varied between 256 and 355?mg/L at HRTs of from 5.0 to 12.5 h. The antibiotics ampicillin and aureomycin, with influent concentrations of 3.2 and 1.0?mg/L, respectively, could be partially degraded in the anaerobic baffled reactor: ampicillin and aureomycin removal efficiencies were 16.4 and 25.9% with an HRT of 1.25 day, and 42.1 and 31.3% with HRT of 2.5 day, respectively. Although effective in COD removal, the biofilm airlift suspension reactor did not display significant antibiotic removal, and the removal efficiencies of the two antibiotics were less than 10%.  相似文献   

19.
Aerobic methane oxidation coupled to denitrification (AME-D) is a process in which aerobic methanotrophs oxidize methane and release organic compounds that are used by coexisting denitrifiers as electron donors for denitrification. This process is potentially promising for denitrification of wastewater or landfill leachate poor in organic carbon using methane produced onsite as external electron donor. We studied the kinetics of an aerobic methane-oxidizing denitrifying culture and investigated the effect of dissolved oxygen (DO) concentration and air supply rate on AME-D using a batch reactor and a semicontinuous reactor setup. At methane concentrations of 18–33% in air and air flow rates of 15–35?mL?air?L?1?liquid?min?1, the DO concentration was less than 0.01?mg?L?1 and the nitrate removal reached a maximum value of 56.7?mg?NO3–N?g?1?VSS?d?1 with 79% being attributed to denitrification. When the air supply rate was increased to 70?mL?air?L?1?liquid?min?1 resulting in a drop in methane content to 10%, the DO concentration in the bioreactor rose to about 0.8–1.0?mg?L?1 and the total nitrate removal dropped to about 10?mg?NO3–N?g?1?VSS?d?1 with none of it being attributed to denitrification.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号