首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王华  刘艳艳 《表面技术》2023,52(11):1-22, 127
镁合金是一种有发展前途的绿色工程金属材料,但其较差的抗腐蚀性能限制了它的大规模应用。对镁合金表面进行超疏水处理,能够极大地提高镁合金的耐腐蚀性能。当超疏水试样浸泡在腐蚀溶液中时,该结构将在腐蚀介质中形成固-气-液界面层,减少镁合金表面与腐蚀介质之间的接触面积,从而降低腐蚀速度。超疏水表面需要满足微纳米结构和低表面能2个必要条件。可以采用二步法或一步法在镁合金表面制备超疏水表面,详细介绍了在镁合金表面构造微纳米结构的方法,包括激光处理、机加工、化学刻蚀、化学镀、电化学沉积、阳极氧化、微弧氧化、水热合成和喷涂等方法。超疏水表面一旦受到机械损伤,微纳米结构无法满足条件,超疏水表面的“气垫效应”消失,腐蚀介质就会直接与微纳米结构接触,因此需要保证构建的微纳米粗糙结构对镁基体具有良好的保护作用并具有自愈功能。通过制备复合涂层,提高下层微纳米结构的自愈合性能,上层涂层的超疏水性与下层涂层的良好物理屏障能力的协同效应可以改善涂层的长久耐腐蚀性能。综述了在镁合金上制备具有良好耐腐蚀性能的复合超疏水表面的方法,并对镁合金超疏水表面防护技术的研究方向进行了展望。  相似文献   

2.
目的 制备超疏水自清洁的Ti6Al4V合金表面。方法 首先使用飞秒激光在Ti6Al4V合金表面预制备微米级结构,然后将预制备的样品置于1.0 mol/L的氢氧化钠溶液中,在超声水浴状态下进行电化学去合金,获得微纳米复合结构。经表面改性后,得到微纳超疏水钛合金表面。结果 经复合制备的微纳超疏水表面结构由微米级的梯形凸柱阵列,以及通过电化学去合金形成的三维纳米孔洞骨架和沉积的微米或亚微米金属氧化物组成。经过表面改性后,该微纳复合结构表面呈现优异的超疏水性,其接触角可达162.5°,滚动角低至3.4°。自清洁性能测试结果表明,该微纳超疏水钛合金表面展现出优异的低黏附性和自清洁性,1滴水对表面的清洁效率达到99.8%。激光加工参数与静态水接触角之间的关系表明,接触角与扫描间距呈负相关,与能量密度、重复次数呈正相关。结论 飞秒激光结合电化学去合金方法制备的具有微纳结构的钛合金表面呈现出优异的超疏水自清洁性能,通过改变激光加工参数能够有效增大表面的静态水接触角,为后续研究提供了一定参考。  相似文献   

3.
铝合金由于易被腐蚀的缺陷限制了其发展,研究表明表面超疏水化能有效地提升其耐腐蚀性能。 文中以铝合金作为基底材料,首先采用激光加工的方法制备微结构表面,然后采用氢氧化钠刻蚀制备超疏水表面。 利用扫描电子显微镜(SEM)、光学轮廓仪、X 射线能谱仪(EDS)、接触角测量仪和电化学工作站对样品表面微观形貌、化学元素组成、 润湿性能和耐腐蚀性能进行表征。 结果表明:激光功率为 30 W,氢氧化钠浓度为 0. 1 M,刻蚀时间为 6 min,该表面的接触角最高为 155. 1°,同时该超疏水表面具有双尺度分层结构,分别是光栅结构与更小一级的蜂窝状结构。 超疏水表面电化学测试表明,腐蚀电位发生左移,为-0. 635 V,自腐蚀电流密度变化更为明显,减小至 1. 68×10-6 mA·cm-2 。 该表面耐腐蚀性能显著增加。  相似文献   

4.
张倩倩  漆雪莲  张会臣 《表面技术》2018,47(11):102-108
目的 研究微/纳米复合超疏水结构的摩擦磨损机制,提高镁合金微摩擦磨损性能。方法 首先采用激光刻蚀获得微米结构,然后表面涂覆SiO2纳米颗粒,获得微/纳米复合结构,最后涂覆低表面能物质获得超疏水表面。用接触角测量仪测量超疏水表面的静态接触角,使用微摩擦磨损实验机分析超疏水表面的摩擦磨损性能,使用扫描电子显微镜观察表面磨痕形貌。结果 当载荷为1 N时,超疏水表面的摩擦系数约为0.04,基体表面约为0.06。随着载荷的增加,超疏水表面的摩擦系数逐渐与基体相近,并逐渐超过基体。随着时间的增加,超疏水表面的摩擦系数呈增加趋势,由0.04逐渐增加到0.08,基体试样没有明显的上升趋势。相同条件下,超疏水表面的磨痕宽度大于基体表面,但磨痕宽度的增大趋势小于基体表面。结论 微/纳米复合结构超疏水表面的摩擦磨损过程不同于光滑基体。超疏水表面的磨损首先发生于微/纳米凸起结构,之后发生于被微/纳米凸起填平的微米凹坑区,然后发生于激光加工热影响区表面,最后发生于镁合金基体。在所受载荷低于1~3 N时,超疏水表面微凸起结构能延缓超疏水表面摩擦磨损的发生,改善耐磨性能。  相似文献   

5.
马宁  张鑫宇  孙岩  龙芳宇  孙凯伦 《表面技术》2023,(12):197-205+273
目的 提高TC4钛合金超疏水表面的疏水性、耐腐蚀性与力学性能。方法 首先选择化学刻蚀法对TC4钛合金进行处理制备出微米级结构,再采用阳极氧化法制备出纳米级结构,最终在试样表面制备出了具有微纳分级结构的超疏水表面。通过观察微观结构表面、Tafel测试、线性磨损试验、抗冲击性测试以及防冰性能测试,分别对H2O2刻蚀、强酸刻蚀、阳极氧化、H2O2刻蚀-阳极氧化和强酸刻蚀-阳极氧化制备的超疏水表面进行性能对比。结果 使用双氧水-碳酸氢钠混合溶液制备出的超疏水表面接触角为156.4°,滚动角为2.7°;硫酸-盐酸混合溶液制备出的超疏水表面接触角为153.1°,滚动角为7.6°;阳极氧化法制备的超疏水表面接触角为156.3°,滚动角为4.2°;双氧水-碳酸氢钠混合溶液刻蚀并阳极氧化处理后,表面接触角为157.6°,使用硫酸-盐酸混合溶液刻蚀并阳极氧化处理后,表面接触角为155.9°,二者滚动角均小于2°。复合方法制备的表面疏水性能优于单一方法制备的超疏水表面。超疏水试样的OCP都高于TC4钛合金,经过强酸刻蚀和...  相似文献   

6.
侯涛  马国佳  武壮壮  张昊泽 《表面技术》2023,52(11):335-346
目的 针对超疏水涂料功能持久性差的问题,提出一种将飞秒激光加工技术与微球近场效应原理相结合在氟化有机硅树脂表面制备微纳米仿生结构的解决方案。方法 模仿蝴蝶翅膀鳞片微结构特征,以平滑的氟化有机硅树脂表面为基体,采用纳米自组装技术在其表面生长一层二氧化硅微球薄膜,然后设置飞秒激光器的参数,利用激光脉冲能量加工单层二氧化硅微球薄膜,二氧化硅微球颗粒对激光能量有进一步的聚焦加强作用,可以加工微纳米尺寸的结构。重点研究激光功率和扫描速度等参量对氟硅树脂图案形貌及疏水性的影响,并对比分析超疏水涂料和仿生微纳米表面的疏水功能持久性。结果 激光扫描速度和功率参量对仿生表面疏水性能的影响较大,在激光功率为9 mW、扫描速度为10 mm/s、加工间距为10μm时可以获得最佳疏水性能,其接触角达到150°以上,通过常用的摩擦磨损测试实验,对比分析实验结果发现,氟硅树脂层经历200~1000次摩擦后,其接触角(CA)的下降幅度低于传统涂料组,说明具有仿生纳米坑结构的表面的耐磨性更强。结论 利用飞秒激光加工的纳米微孔阵列结构可以明显提高氟硅树脂的疏水特性,并具有优异的持久性。  相似文献   

7.
Ti基底三维微纳米结构TiO_2(3D-TiO_2)具有比表面积大、光捕获能力强、电荷传输快、可循环利用的优点,在光催化领域具有重要的研究意义和应用前景。采用飞秒激光刻蚀复合Na OH水热法制造Ti基底3D-TiO_2,并研究飞秒激光刻蚀的微阵列结构对3D-TiO_2光催化性能的影响。采用激光共聚焦显微镜(LSCM)、SEM、TEM、XRD对3DTiO_2进行表征分析,并对3D-TiO_2在紫外光照下进行甲基橙降解性能测试。结果表明,复合方法制备的3D-TiO_2由飞秒激光刻蚀的微阵列和Na OH水热法制备的TiO_2纳米线组成。与采用Na OH水热法直接在平整Ti表面制备的TiO_2纳米线相比,3D-TiO_2的染料吸附能力提升100%,光催化性能提升37%。微阵列结构尺寸对3D-TiO_2的性能具有明显影响,随着微阵列宽度的减小或高度的增加,3D-TiO_2的比表面积增大、入射光反射率降低、光催化性能提高。  相似文献   

8.
目的构筑具有疏水性能的3Cr13不锈钢微纳结构表面,并分析表面微纳结构与疏水性能之间的关系。方法试验设计了喷砂与化学刻蚀结合的两步构筑方法,通过对喷砂与刻蚀工艺的不同参数优化,制备了具有疏水性能的3Cr13不锈钢微纳表面。从表面形貌参数推测了亲水与疏水试样表面微结构的差异,并从微结构面积分布的不同对推测进行了证明。结果经过处理后,不锈钢基体表面呈现由微米孔洞与纳米颗粒组成的微-纳双重结构分布,喷砂与刻蚀参数会影响基体表面微纳结构粗糙度因子,同时表面微孔洞的尺度、分布会影响疏水性能。疏水试样表面200~1000μm~2孔洞占孔洞总面积的比值大于39%,而1000μm~2以上孔洞占孔洞总面积的比值小于30%,即疏水试样表面微结构更多的是由密集的小面积孔洞组成。结论通过喷砂与化学刻蚀的方法可使3Cr13不锈钢表面产生具有疏水性能的微-纳双重结构,且疏水性能与微结构面积密切相关,当1000μm~2以上孔洞面积小于30%时,试样呈疏水性。  相似文献   

9.
阴极刻蚀法制备超疏水铝镀层及其抗腐蚀性能研究   总被引:2,自引:2,他引:0  
对硅基磁控溅射铝镀层表面加载阴极电流,在镀层表面构建了微纳复合结构,并通过十四酸修饰获得稳定的超疏水膜。研究了超疏水表面的形成机制与结构特征,分析了超疏水表面的抗腐蚀性能。结果表明:经阴极刻蚀处理后,铝镀层表面形成了覆盖纳米级絮状物的腐蚀孔,呈现出珊瑚网状结构;再经十四酸有机修饰后,达到超疏水状态,十四酸在镀层表面形成了稳定的化学吸附,样品腐蚀阻效达到98.9%,抗腐蚀性能显著提高。  相似文献   

10.
本文以Ti6Al4V钛合金为基材,利用微弧氧化和水热法在钛合金表面形成微纳复合多级粗糙结构,进一步通过氟化处理得到具有多级结构的超疏水钛合金表面。利用傅里叶变换红外光谱、能谱仪和场发射扫描电子显微镜等对材料表面结构和组成进行了系统的表征。利用水接触角对材料表面润湿性能进行了分析。因此,通过表面多级粗糙结构的构建以及低表面能处理,能够实现超疏水表面的构建。血小板黏附和溶血率测试结果表明材料表面具有较好的血液相容性。材料表面修饰前后耐腐蚀性能测试表明,超疏水结构能有效地降低材料表面与血液和腐蚀液的接触面积,进而降低材料表面与血细胞的相互作用,同时可以有效提高材料表面的耐腐蚀性能。  相似文献   

11.
目的 构筑氧化锆表面微纳结构,提高表面疏水性能。方法 用飞秒激光在氧化锆表面刻蚀网格结构,随后用硬脂酸修饰所得表面,系统研究了激光能量密度、激光扫描速度对氧化锆表面形貌及润湿性的影响,分析不同处理条件下氧化锆的表面形貌和润湿性,通过润湿模型进一步揭示润湿性转变内在机理。进一步通过在饱和大肠杆菌溶液中浸泡的试验,对不同处理条件下氧化锆表面的抗菌性能进行了测试和分析。结果 在9.6 J/cm2的过高能量密度以及10 mm/s的过小扫描速度下会导致氧化锆表面过度烧蚀,破坏表面微结构,不利于提高表面疏水性。发现激光纹理化氧化锆的最佳参数为激光能量密度8.3 J/cm2,扫描速度20 mm/s,制备的微凸起结构为表面覆盖大量纳米结构的周期性锥状阵列,凹槽的平均宽度和平均深度分别为(27.598±1.376)μm和(33.825±0.559)μm,此时表面粗糙度最大为9.556 μm,随着表面粗糙度的增加,微纳复合结构可以截留更多的空气,减少固液接触面积,表面具有最大的水接触角为(163.9±1.5)°,最小的水滚动角为(4.3±0.8)°。平板菌落计数法测定结果显示,此时硬脂酸修饰的激光纹理化氧化锆超疏水表面的抗菌率最高,为(89.1±3.6)%。结论 采用飞秒激光刻蚀结合硬脂酸修饰的方法,通过激光参数优化,可在氧化锆表面产生微纳复合结构,增加其表面粗糙度,从而制备得到疏水甚至超疏水的氧化锆表面,超疏水氧化锆表面截留的空气层对大肠杆菌的黏附具有很好的抑制作用,表现出明显的抗菌性,有望扩展氧化锆在牙科领域的应用。  相似文献   

12.
单一使用皮秒或者飞秒激光器制备抗反射表面已经可以取得很好的结果,但是其加工效率不满足工业生产的需要。提出利用纳秒-飞秒激光复合制备金属高抗反射表面的方法和思路。使用纳秒、飞秒两种激光器对TC4钛合金表面进行刻蚀处理,在金属表面引入微纳米结构,使其在电磁波波长200~2 500 nm间的反射率降低至2%以内并分析作用机理。首先利用纳秒激光在TC4钛合金表面刻蚀槽状结构,该结构在波长200~2 500 nm的最佳平均反射率为5.76%,飞秒激光扫描后,平均反射率降低至3.5%。然后,构造复合结构在槽状结构基础上进一步优化金属表面的抗反射性能,在波长200~2 500 nm的最佳平均反射率为1.87%。最后,制备复合结构,制备中其表面形貌呈现出对齐状和蜂窝状两种微孔排列方式。设计并验证控制激光脉冲起始位置方法,可制备出稳定蜂窝状结构,蜂窝状孔排列的复合结构在波长200~2 500 nm的最佳平均反射率可降低至1.63%。单位面积内蜂窝状复合结构的有效表面占比更大;同时可以附着更多的纳米颗粒,由于纳米粒子的激元共振效应,加之纳米颗粒团尺寸不同,其吸收峰从单一频率拓宽至一个频率带,金属表面的光吸...  相似文献   

13.
刘戈辉  邢敏  于婷  雷西萍 《表面技术》2019,48(12):140-149
目的 通过化学刻蚀法制备铝基超疏水表面,并提高其机械稳定性和化学稳定性。方法 以盐酸(HCl)为主刻蚀剂,对甲苯磺酸(TSA)为辅助刻蚀剂,通过化学刻蚀法构筑铝片微-纳米结构,涂覆硬脂酸后制备超疏水铝。探讨最佳刻蚀时间和浓度,通过FESEM、EDS和ATR-FTIR对铝片的表面结构和化学组成进行分析。利用接触角测量仪、电化学工作站和线性耐磨实验分别对铝表面的润湿性、耐腐蚀性和机械稳定性进行研究,并探讨铝在3.5% NaCl溶液中的化学稳定性。结果 当TSA浓度为0.2 mol/L,刻蚀时间为8.0 min时,获得的超疏水表面接触角(CA)最大,为167.9°,滚动角(SA)为6.3°,对应的腐蚀电位较裸铝正向移动了742 mV,腐蚀电流密度降低了1个数量级。此外,该超疏水表面还具有良好的机械稳定性和化学稳定性,经砂纸磨损70 cm后,接触角仍高达155.9°。模拟海水环境测试化学稳定性发现,将其浸泡在3.5% NaCl溶液中,20天仍维持在一种粘附超疏水状态。结论 通过调节化学刻蚀时间和TSA浓度在铝基表面制备得到微-纳米粗糙结构,硬脂酸改性后,获得具有超疏水性能的复合表面。该超疏水铝表面兼具优异的机械稳定性和化学稳定性能,并可以在高盐环境下保护铝基体。  相似文献   

14.
为提高钛合金抗海洋生物附着性能,采用激光刻蚀技术在Ti6Al4V合金表面构建不同间距的微米级点阵结构,利用聚合物基纳米复合材料构建微/纳双层结构,制备超疏水Ti6Al4V合金表面。用光学显微镜和扫描电镜表征其形貌;用接触角测量仪测量试样的表面接触角;用浅海挂板的方法测试试样的抗海洋生物附着污损性能。结果表明,具有单一微结构的Ti6Al4V合金表面为疏水表面。随着点阵间距的减小,接触角增大。当间距为50μm时,接触角可达131.8o,但试样的表面滚动角较大,将试样竖直甚至翻转,水滴都不滚落;具有微/纳双层结构的Ti6Al4V合金表面为超疏水表面,且随着点阵间距的减小接触角增大,滚动角减小。当间距为50μm时,接触角达163.8o,滚动角仅为1.89o。具有微/纳双层结构的超疏水Ti6Al4V合金表面抗海洋生物附着污损性能显著优于抛光Ti6Al4V合金表面及具有单一微结构的Ti6Al4V合金表面。  相似文献   

15.
目的 使用飞秒激光在Cu箔表面深刻蚀织构化,制备微纳沟槽结构,提高锂离子电池Si电极循环稳定性。方法 系统研究激光能量密度、单位点有效脉冲数对厚度为9 μm的Cu箔的表面形貌和微纳结构的影响规律,根据结果设计不同沟槽密度和沟槽深度的Cu箔,并组装成Si电极锂离子半电池,通过循环测试及循环后电极形貌揭示其稳定性提升的内在机理。结果 最佳的激光能量密度为3.18 J/cm2,此时改变单位点有效脉冲数和扫描间距可有效控制刻蚀沟槽的密度和深度。Si电极的循环稳定性随着Cu箔表面沟槽密度和沟槽深度的增加而逐渐提升,当沟槽密度为75%、沟槽深度为6 μm时,循环300圈后剩余的容量高达911 mA.h/g,保持率为89%,电极形貌相对最完整、稳定。结论 刻蚀表面纳米结构增加了电极层与集流体之间的黏结强度;微米沟槽结构进一步保护了电极层,缓解了体积膨胀效应。采用Cu箔集流体深刻蚀显著改善了Si电极的剥离和开裂现象,实现了其电化学性能的提升。  相似文献   

16.
目的 针对液体输运距离短、速度慢等问题,提出一种基于梯度疏水基底的箭形图案化表面,该表面能有效改善液滴的输运性能。方法 对铝合金表面依次进行预处理、激光加工基底、低表面能改性处理和激光加工箭形亲水图案,得到具有良好输运性能的图案化表面。深入研究激光扫描速度对铝合金表面形貌和润湿性的影响。结果 随着激光扫描速度的提高,表面微结构由“微纳分层结构”逐渐变为“亚微米结构”,铝合金表面的粗糙度逐渐变小,导致表面静态接触角由150°左右降至107°左右,动态接触状态由滚动状态变为钉扎状态。另外,随着扫描速度的增加,基底表面O的质量分数从11.2%降至7.7%,F的质量分数从17.6%降至10.6%,表明表面氧化物减少,导致表面对含F有机物的吸附能力减弱,进而导致表面疏水性降低。液滴在基于梯度疏水基底的箭形图案化表面上的输运距离可达到61 mm,相较于均匀疏水基底,提高了34%。结论 采用梯度激光扫描速度和低表面能处理可简单、快速地获得梯度疏水基底,相较于基于均匀疏水基底的图案化表面,液滴在基于梯度疏水基底的图案化表面上的输运性能得到显著提高,液滴自发、定向和高性能的输运在水收集装置、传热设备等方面具有广阔的应用前景。  相似文献   

17.
化学刻蚀法调控铝合金阳极氧化膜的表面结构及防腐性能   总被引:1,自引:0,他引:1  
为了提高铝合金的耐蚀性能,采用化学刻蚀与阳极氧化相结合的方法在铝合金表面构造了微纳结构,经进一步化学修饰后得到耐蚀性能良好的表面防护膜层。利用扫描电子显微镜、红外光谱仪表征所制备膜层的表面形貌和化学成分,采用激光共聚焦显微镜测定样品的表面粗糙度,通过接触角测量仪和电化学工作站对膜层的润湿性和防腐性能进行表征,考察刻蚀时间对于膜层表面结构和耐蚀性能的影响规律。结果表明:当刻蚀时间为3min时,膜层的耐蚀性能最佳:相对于未经刻蚀的样品腐蚀电位正移了0.15V,腐蚀电流下降了两个数量级。且接触角最大(152°),这是由于此条件下制备的薄膜表面微/纳结构最完整、比例最合理。  相似文献   

18.
在远程管道运输过程中,固液间摩擦阻力是一个不容忽视的问题,类鲨鱼结构减阻效率低且制备困难。基于荷叶表面仿生思想,构筑微结构制备超疏水表面,减小摩擦阻力。采用飞秒激光刻蚀与电沉积复合工艺,在不锈钢表面构筑框-锥多级结构,经自组装氟硅烷制备超疏水表面,讨论复合工艺参数对微结构形貌及润湿性能的影响,探究框-锥多级结构超疏水表面减阻。结果表明,利用飞秒激光可获得周期性分布的框结构,随着激光功率的增加,微米框结构内部形成不规则沟壑金属堆积物,且关光延时的增长会产生单侧分布微孔结构,损伤基体整体强度;通过电沉积工艺制备亚微米尖锥结构镍镀层,随着电流密度的增加,镀层微结构形态发生变化,形成亚微米尖锥石结构,表面由疏水转变为超疏水。与激光刻蚀10次自组装氟硅烷涂层试样相比,激光刻蚀与电沉积复合工艺自组装氟硅烷涂层的试样表面接触角由138.6°提高到156.7°,对水和30wt.%甘油的减阻率分别由8.17%、14.38%提高到27.74%、23.69%。将激光刻蚀与电沉积相结合,构筑微纳结构经自组装制备超疏水表面,可为降低管道输运中固液间摩擦阻力提供新的技术途径。  相似文献   

19.
采用激光加工结合构筑纳米结构,并涂覆低表面能物质的方法制备了镁合金超疏水表面。使用光学显微镜和扫描电镜观察表面形貌,接触角测量仪测量超疏水表面的静态接触角,电化学分析方法测试试样在模拟生物体液中的腐蚀性能。结果表明:激光加工参数对超疏水表面形貌和性能具有重要的影响。当加工电流为13 A,点阵间距为50μm时,表面微/纳米结构均匀,静态接触角达到最大值161.7°。超疏水试样的腐蚀电位增加,极化电阻增大,腐蚀电流降低,腐蚀速率降低31%,有效提高了WE43镁合金的耐生物体液腐蚀性能。  相似文献   

20.
采用激光刻蚀技术在钛合金表面分别构筑网格、直线、点阵3种微结构,采用溶胶-凝胶法将纳米SiO2粒子涂覆在微结构上,制备分别具有微结构/微纳结构的疏水/超疏水表面.利用小球藻附着面积评价表面的抗海洋生物附着性能,利用动态冲刷实验评价小球藻的附着强度.结果显示:具有微结构的疏水/超疏水表面符合Wenzel模型,具有微纳结构的超疏水表面符合Cassie模型,且其表面抗附着性能更优,附着强度更小;网格表面的超疏水自清洁性能最强,抗附着性能最优,附着强度最小,其次是直线,再次是点阵;随着微结构间距的增大,接触角减小,滚动角增大,抗附着性能降低,附着强度增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号