首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 为探究超音速火焰喷涂的高温高速射流对镁合金基体的影响,以形变后镁合金表面纯铜涂层的制备过程为研究对象,研究喷涂过程中镁合金基体的微观组织演化机理。方法 采用超音速火焰喷涂(HVAF)工艺在挤压态AZ80镁合金试样表面制备纯铜涂层,对不同喷涂道次下获得的试样进行微观组织观察与显微硬度测试,结合EBSD分析涂层结合面附近基体的晶粒尺寸分布、再结晶状态及织构取向等。结果 在高温高速射流作用下,涂层结合面附近的基体发生再结晶,平均晶粒尺寸由50μm细化至15.2μm;随着喷涂道次的增加,β相逐渐回溶,孪晶消失,基体硬度先降低至70HV0.2后恢复到80HV0.2,织构强度逐渐减小至10.042。结论 多道次超音速火焰喷涂过程中,由于第二相回溶与再结晶的共同作用,镁合金基体硬度呈现出先降低再升高的趋势;再结晶晶粒以晶界弓出形核与亚晶转变共同形成,并在涂层压应力作用下选择性偏转与长大,逐渐吞并原始变形晶粒;与此同时,亚晶界逐渐转变为大角度晶界,晶粒被再次细化,最终导致涂层结合面处基体产生明显的择优取向。  相似文献   

2.
采用溶胶-凝胶化学包覆法制备纳米陶瓷微米高温合金复合粉末,用HVOF喷涂技术制备了复合涂层,采用SEM观察和摩擦磨损实验分析了复合粉末和复合涂层的组织和性能.研究表明:复合粉末是以纳米陶瓷为外壳包覆微米级高温合金颗粒核心的核壳式结构;陶瓷壳在喷涂过程中形成液相与高温合金液相熔合,烧结成致密陶瓷相,部分陶瓷在冷却过程中析出结晶体;复合涂层与基体的结合强度为59.2 MPa,摩擦系数为0.766,磨损率比纯高温合金涂层降低了32%.  相似文献   

3.
ZM6镁合金冷喷涂Al涂层结构与耐蚀性研究   总被引:2,自引:0,他引:2  
为提高镁合金耐蚀性,在ZM6基体上采用冷喷涂技术制备了纯铝涂层。用扫描电镜(SEM)、能量色散谱(EDS)、显微硬度测试仪等研究了涂层形貌结构和性能;利用电化学方法和中性盐雾实验对涂层的抗腐蚀性能进行了评价。结果表明:在ZM6基体上冷喷涂的铝涂层结构致密,孔隙率为0.8%,显微硬度HV平均为59.8,高于镁合金;结合力达到21MPa;涂层抗腐蚀性能优于镁合金,冷喷涂铝涂层的自腐蚀电位与镁合金相比较,提高了约700mV,中性盐雾实验200h无腐蚀,可为ZM6提供长效保护。  相似文献   

4.
《功能材料》2021,52(9)
通过一步喷涂法将微纳米表面构建与低表面能物质修饰相结合,制备了超疏水仿生涂层;开展超疏水材料涂覆技术研究,分析总结不同涂敷方式对涂层的性能影响;测定了不同粉体种类与浓度下涂层的疏水性能差异,分析评价其对涂层疏水性能的影响;优选涂层材料配比对混凝土试块进行疏水改性,并测试其防污性能;通过LW-AB法表面能计算,探讨了涂层粗糙度与表面能之间的关系,并使用SEM对其表面微观形貌进行了表征。结果表明,在添加微纳米颗粒的情况下,喷涂制备的涂层接触角比浸涂制备的涂层大1/3左右,滚动角比浸涂制备的涂层小85%以上,体现了较好的疏水性能;涂层的疏水性能受表面能与粗糙度的影响,且随着硬脂酸浓度的增加、粉体浓度的增加与粉体颗粒粒径的减小,涂层的疏水性能呈增强的趋势,接触角达到165.27°,滚动角低至0.9°;经过超疏水处理后,混凝土试块表现出明显的防污与自清洁性能;表面能计算表明,在添加同样硬脂酸含量的条件下,随着粗糙度的增加,涂层表面的降低至4.89 mJ/m~2,仅为纯硬脂酸涂层的26.84%。  相似文献   

5.
以正硅酸乙酯(TEOS)和正辛基三甲氧基硅烷(OTMS)为原料,采用溶胶-凝胶法制备了TEOS-OTMS溶胶,分别在光滑玻璃基体、刻蚀玻璃基体上,通过一步浸渍提拉法制备了疏水涂层,研究了水解时间对涂层疏水性能和硬度的影响,提出了TEOS-OTMS溶胶与疏水涂层形成机制。结果表明:TEOS-OTMS原位水解-聚合可以制备以SiO2颗粒为胶核,辛基硅烷包覆的胶体粒子,在玻璃基体形成辛基链修饰的低表面疏水膜层,当TEOS预水解聚合4 h, TEOS-OTMS共水解聚合20 min时,涂层疏水角达到(124.01±2.00)°,铅笔硬度达到6 H。利用扫描电子显微镜对微观结构进行分析,玻璃基体通过刻蚀形成间距6.36 nm、平均大小16.75 nm的微观凸起,使TEOS与OTMS的缠结、聚集增强,涂层形成了150~200 nm的孔隙,这种“微观粗糙”是形成超疏水涂层的关键,TEOS-OTMS涂层疏水角达到(160.08±2.00)°。  相似文献   

6.
为了改善AZ31B镁合金的耐磨性,以Al2O3-13%TiO2为陶瓷骨料,在其中加入Al/CuO铝热荆,采用普通氧乙炔火焰自蔓延高温合成反应热喷涂技术在镁合金表面制备Al2O3基复相陶瓷涂层.通过X射线衍射分析了陶瓷涂层的组成.结果表明,所得复相陶瓷涂层具有良好的抗热震性,涂层内有Cu4MgO5,CuAlO2等新的物相产生.磨粒磨损试验、黏着干磨损试验和黏着油磨损试验表明:自蔓延反应热喷涂陶瓷涂层的耐磨性是AZ31B基体的6.48,3.32,6.04倍,普通热喷涂层的耐磨性是AZ31B基体的3.60,1.76,1.67倍,自蔓延反应热喷涂陶瓷涂层的耐磨性比普通热喷涂层有较大提高.  相似文献   

7.
以硅藻土和TiO2为微纳米结构的构筑物,以聚二甲基硅氧烷为低表面能改性剂,采用喷涂法在多种基底表面制备超疏水涂层材料。该涂层具有优异的超疏水性能,水静态接触角高达161°,表面自清洁性能优异,且耐热温度可高达350℃。该超疏水涂层材料在纺织品自清洁、医用防水及工业防腐等领域具有一定的应用前景。  相似文献   

8.
镁合金超疏水表面的制备技术与应用研究进展   总被引:1,自引:0,他引:1  
通过制备镁合金超疏水表面,可以有效减少镁合金表面与腐蚀介质的直接接触,从而提高镁合金的耐腐蚀性和防腐涂层稳定性,有助于进一步扩大镁合金在工业等领域中的应用。在简要概述固体表面润湿性的影响因素和相关理论分析的基础上,综述了国内外镁合金超疏水表面制备技术与应用的最新进展,重点归纳了粗糙表面的构建方法,探讨了各种制备方法的特点,总结了镁合金超疏水表面防腐蚀的机理,并提出了镁合金超疏水表面研究的发展方向。  相似文献   

9.
将硝酸银、氢氧化钠和硬脂酸在乙醇水溶液中反应制备硬脂酸银。将硬脂酸银的乙醇分散液喷涂在基片上即得到超疏水表面。该方法操作简单,可适用于多种基体表面。研究表明硬脂酸银超疏水表面是由叶片状硬脂酸银堆叠而成的粗糙结构,硬脂酸银的长链烷基链段具有低表面能,二者结合使得硬脂酸银涂层具有超疏水性。硬脂酸银超疏水表面在宽广的pH值范围内和温度区间都具有具有稳定的超疏水性。超疏水表面经人为破坏后,可以随时随地快速喷涂修复。  相似文献   

10.
在MCrACY中添加一定量Al2O3可提高其高温磨损性能.为此,将CoNiCrAlY和微米级Al2O3粉末颗粒按比例混合后在密封球磨机里球磨,筛分后得到复合CoNiCrAlY/Al2O3粉末颗粒.分别采用超音速火焰(HVOF)喷涂和大气等离子(APS)喷涂制备复合CoNiCrAlY/Al2O3涂层,并对喷涂粉末及2种涂层的形貌及性能进行了分析表征.SEM分析显示粉末颗粒内部含弥散分布的超细Al2O3颗粒.2种方式制备的涂层都含有弥散分布的超细Al2O3颗粒.HVOF制备的涂层中保留超细Al2O3颗粒较好.APS制备的涂层中超细Al2O3颗粒有所减少,涂层层间形成大量层状氧化物.2种方式制备的涂层中,HVOF制备的涂层硬度、结合强度高.  相似文献   

11.
李为民  彭超义  吴彬瑞 《材料导报》2017,31(Z1):334-337, 350
提高耐磨性能是推动仿生超疏水表面走向实际应用的关键挑战之一。设计了二氧化铈微米粒子增强PMMA/PVDF超疏水复合涂层配方,获得了水珠接触角达152°、水珠滚动角为5°的超疏水复合涂层。该涂层经过落砂磨损试验后接触角下降为103°、滚动角增大为20°。采用碳纤维颗粒对CeO2/PMMA/PVDF超疏水复合涂层进行增强,优化配方的接触角达153°、滚动角达到5°。经过相同落砂磨损试验后,增强后的复合涂层水珠接触角能在一定程度磨损后达到140°左右。可见,CeO2/PMMA/PVDF复合涂层具有良好的超疏水性能,碳纤维颗粒增强是提高该涂层耐磨性能的有效方法。  相似文献   

12.
采用超音速火焰喷涂技术在45#钢基体表面制备纳米Ni60-TiB2复合涂层,研究了纳米和常规微米Ni60-TiB2复合涂层在静态大气环境下600℃的循环氧化行为。结果表明:纳米Ni60-TiB2涂层具有晶粒纳米化和微观组织均匀化的特点,其氧化膜由完整连续SiO2膜构成,在其上均匀地分布着细小的TiO_2颗粒和B_2O_...  相似文献   

13.
目前,超疏水涂层多采用含氟低表面能化合物制备,成本较高,工艺较复杂,限制了其推广应用.为此,通过在环氧酚醛涂料中加入具有疏水作用的表面活性剂和微米轻质碳酸钙颗粒改变涂料的表面状态,在碳钢表面制备了具有仿荷叶表面结构的疏水涂层.利用扫描电镜和接触角测定仪对涂层的表面形貌和疏水性能进行了表征.结果表明:涂层的结构与荷叶表面的的乳突结构具有较好的一致性,水滴在涂层表面的接触角得到了显著提高;涂层具有良好的疏水功能.  相似文献   

14.
为了提高建筑用6063铝合金板表面抗静电能力,以硅烷偶联剂KH570改性处理纳米Si O2,再以其与疏水材料粉末组成静电喷涂材料,并以静电喷涂方式在建筑用6063铝合金板表面制备涂层,测试研究涂层的组织、润湿性及结合性能。结果表明:加入KH570进行改性得到的Si O2粒径降低,KH570在水解过程中形成-OH再跟SiO2表面-OH发生缩合反应。SiO2颗粒间存在许多孔隙,该结构有助于提高试样疏水性;随SiO2添加量增加,涂层接触角先增大后降低,都大于130°,综合分析将改性SiO2含量设定在20%的最优值;摩擦次数达到50次与100次的情况下,涂层依然表现出优异疏水性能,具备较好耐磨性;在划痕末端出现大块脱落,采用静电喷涂方法可以制备得到和基体形成更强结合能力的涂层。  相似文献   

15.
成志芳  王富耻  马壮  卢林 《材料导报》2012,(Z1):101-103
采用等离子喷涂技术在钢基体上表面制备了Al2O3-13%TiO2涂层,喷涂粉末分别采用微米和纳米结构,测试了涂层的显微硬度;采用定量分析软件测定了涂层孔隙率并通过扫描电镜分析了涂层的显微组织;采用拉伸试验机测试了涂层的结合强度。结果表明,微米粉制备的Al2O3-13%TiO2涂层具有明显的层状结构,纳米粉制备的Al2O3-13%TiO2涂层在层状结构的基础上镶嵌有大量的未融化和部分融化的粒子;纳米Al2O3-13%TiO2涂层粒子间结合紧密,孔隙率低,结合强度高,显微硬度高。  相似文献   

16.
为了提高传统Al_2O_3+40%TiO_2等离子喷涂层的力学性能,将纳米结构的ZrO_2粉末引入热喷涂层,采用液相喷雾造粒的方法将纳米ZrO_2-准微米级Al_2O_3/TiO_2颗粒团聚成适用于等离子喷涂的微米级粉体,并用等离子喷涂技术制备出含有纳米结构的陶瓷涂层.利用X射线衍射仪、扫描电镜和显微硬度计等对涂层的微观结构和性能进行了检测.结果表明,最佳喷涂功率40 kW下制备的纳米陶瓷涂层的显微硬度和韧性比传统涂层有了明显提高.  相似文献   

17.
传统的超疏水表面的制备过程比较复杂,机械稳定性差,这严重制约了超疏水表面的实际应用。采用“黏合剂+纳米粒子”的方法,在镁合金表面制备一种无氟、持久稳定的超疏水环氧复合涂层。接触角测试结果表明,复合涂层的接触角最高可达160.2°,且在3.5%(质量分数)NaCl溶液中浸泡30天后,接触角仍然高达103°;EIS结果表明,在5个加速老化循环周期后,复合涂层的|Z|_(0.01 Hz)仍高于10^(9)Ω·cm^(2),展现出优异的耐盐雾性能和耐蚀性能;摩擦磨损实验结果显示,在19.6 N的载荷下机械摩擦8 h后,复合涂层的|Z|_(0.01 Hz)高达1.84×10^(9)Ω·cm^(2)。通过“空气垫”的屏障作用,复合涂层能够为镁合金提供高效且持久的腐蚀防护,“黏合剂+纳米粒子”策略为超疏水涂层的制备提供了新的思路。  相似文献   

18.
采用硫酸刻蚀和接枝疏水长链的方法,成功制备出了具有超疏水特性的镁合金表面。采用红外光谱、扫描电镜和电化学测试等技术对超疏水镁合金表面进行了表征和分析。研究结果表明:硫酸处理使得镁合金表面产生微米/纳米二元复合的花状粗糙结构;硬脂酸的疏水长链通过化学键键接在镁合金表面,从而显著降低了镁合金表面的自由能。最终得到接触角可达152°、滚动角小于10°的超疏水表面,从而极大地提高了镁合金的耐腐蚀性能。  相似文献   

19.
以TiFe粉和蔗糖为原料,通过蔗糖的热分解碳化制备Ti-Fe-C系反应热喷涂复合粉末,利用普通氧乙炔火焰喷涂成功制备出TiC/Fe复合涂层.采用XRD、SEM和TEM等对喷涂粉末和涂层的组织结构、涂层中的TiC颗粒进行了分析.研究结果表明:TiC/Fe复合涂层主要由TiC颗粒均匀分布于Fe基体中的复合强化片层构成,片层中TiC颗粒呈球形或近球形,粒径约为50nm;纳米级TiC颗粒增强的复合强化片层占涂层体积的60%以上.  相似文献   

20.
王强  毛轩  牛文娟  韩鹏 《功能材料》2022,(9):9159-9165
对铁基非晶合金粉末进行循环深冷处理增强其塑性变形能力,采用冷喷涂技术在AZ31B镁合金、6061铝合金以及Q235碳钢等具有不同性能的基体材料表面制备非晶涂层,研究深冷处理铁基非晶粉末在不同基体表面的沉积行为、涂层与基体间的界面结合状态以及涂层的摩擦磨损性能。结果表明,基体的硬度、导热系数和弹性模量会影响颗粒的应变条件、散热速率和回弹能量,进而影响涂层的变形状态、致密程度和沉积效率;深冷处理提高了非晶涂层的沉积效率,涂层的沉积厚度均大于原始非晶涂层。在摩擦磨损过程中,随着基体硬度的上升,基体及涂层的摩擦系数增大,磨损率降低。与基体相比,铁基非晶合金颗粒有效抑制了磨球的切削作用,原始非晶涂层的摩擦系数减小,磨损率降低;与原始非晶涂层相比,深冷处理非晶涂层更加致密,其摩擦系数曲线更加平稳,磨损率进一步降低。镁合金基体和非晶涂层的磨损机制都为磨粒磨损和氧化磨损;铝合金基体的磨损机制为粘着磨损和疲劳磨损以及氧化磨损,非晶涂层的磨损机制都为磨粒磨损和氧化磨损;碳钢基体和非晶涂层的磨损机制都为疲劳磨损和氧化磨损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号