共查询到20条相似文献,搜索用时 15 毫秒
1.
浮选颗粒-气泡矿化包括碰撞、黏附以及矿化气絮体升浮3个子过程,部分目的矿物会在矿化气絮体升浮过程中发生脱附,降低目的矿物浮选回收率,这也是粗颗粒浮选效率较低的根本原因。深入理解颗粒-气泡的脱附机理一直是浮选领域的研究热点与难点,更是实现粗颗粒浮选强化的前提条件。围绕矿浆相、泡沫相以及矿浆-泡沫相界面区3个脱附区域,综述了颗粒-气泡脱附机理最新的研究进展,以期为粗颗粒浮选强化提供理论指导。湍流与气泡兼并脱附分别是颗粒在矿浆相和泡沫相中发生脱附的主要机制,而矿浆-泡沫相界面区颗粒脱附机理尚存在争议,一种观点认为矿化气絮体撞击界面时动能的改变导致脱附,另一种观点认为界面处气泡兼并引起的气泡振荡才是脱附的主要原因,该区域的脱附机理尚需进一步探索。最后提出了未来颗粒-气泡脱附机理研究的发展方向,包括矿浆相多种脱附机制协同作用、宽粒级物料的原位脱附过程及其粒度匹配效应、矿化气泡在相界面处碰撞及兼并脱附过程的能量演化竞争机制。 相似文献
2.
浮选设备中气泡与颗粒的碰撞是一个复杂的力学过程,本文设计了一套电磁发射装置,将颗粒以可控的速度和角度射向水中的静止气泡,用以简化模拟真实的浮选现象。高速相机被用来监测这一碰撞过程,然后对图像进行分析,提取了颗粒的运动参数以及气泡的变形信息,研究了颗粒与气泡的作用时间与液膜排液规律,并推导了一个数学模型来预测碰撞现象的时间尺度并提出了黏附判据。 相似文献
3.
粗颗粒煤泥易于脱附是限制粗颗粒煤泥浮选的主要因素,为了探究粗颗粒煤泥在柱体内轴向的脱附规律,运用一种可在浮选柱给料口上方不同轴向位置添加上升水流的自制流化床浮选柱使浮选柱给料口以上的上升水流表观流速大于粗颗粒粒群的最大沉降末速,从而将经气泡携带至给料口以上的粗颗粒带入泡沫产品,减少在给料口以上因粗颗粒脱附而引起的精煤损失。研究结果表明,难浮粗煤粒在柱体轴向的脱附率和柱体轴向高度之间成线性关系,且界面脱附约占总脱附率的40%,从而证明难浮粗颗粒的主要浮选缺陷是脱附概率大,通过在给料口以上添加上升水流或者降低给料口以上柱体高度可有效实现难浮粗颗粒的浮选。 相似文献
4.
湍流诱发浮选颗粒-气泡脱附已达成广泛共识,但湍流场中颗粒的脱附行为机制仍未明晰。传统离心脱附理论认为当颗粒所受离心力大于毛细力时颗粒从气泡表面脱附,忽略了颗粒重力对浮选颗粒-气泡间稳定性的影响,且未考虑不同尺寸颗粒间的脱附行为差异。采用自制的微流体通道湍流槽探索了湍流涡中不同尺寸颗粒的脱附行为,运用Image-Pro Plus图像处理软件对颗粒脱附过程的动力学参数进行测量分析。结果表明,粗颗粒(2.0 mm)质量大,颗粒在气絮体升浮阶段发生直接脱附;而中颗粒(1.0 mm)和细颗粒(0.5 mm)质量小,气泡会带动颗粒由湍流槽底部向湍流涡中心旋转迁移,同时颗粒在气泡表面高速旋转发生离心脱附。此外,颗粒稳定性分析表明传统邦德(BO*)模型并不能对湍流场中的颗粒-气泡气絮体稳定性进行准确判断,颗粒易受湍流涡加速或气泡振荡的影响,导致颗粒脱附时邦德数在1左右波动。 相似文献
5.
首先分析总结了粗颗粒矿物难浮的原因为粗颗粒矿物与气泡接触时间短,感应时间长,与气泡气固黏附强度低;其次介绍了流态化技术的发展以及该技术在粗颗粒分选中的应用,气固、液固两相流态化在煤分选领域普遍应用,由于有色金属矿分选领域的复杂性,气液固三相流态化浮选技术处于研究阶段;同时总结了流态化浮选技术原理和设备的研究进展,HydroFloat Separator和NovaCell是具有代表性的设备;分析了流态化浮选的主要研究方向和发展趋势为三相流态化浮选动力学过程研究,三相流场模拟策略研究,以及复合力场的加入提升矿物粒度浮选上限。 相似文献
6.
7.
8.
通过颗粒气泡脱附高速动态测试系统,研究了颗粒气泡脱附过程动力学。运用Image-Pro Plus图像处理软件测量颗粒气泡间接触角、三相润湿周边,计算颗粒气泡间毛细黏附力随颗粒运动时间的变化。结果表明:颗粒从气泡表面脱附主要分为气泡拉伸变形接触角增大和气泡滑动三相润湿周边减小两个阶段。气泡拉伸阶段,三相润湿周边固定在颗粒表面,接触角由平衡接触角增大到前进接触角;气泡滑动阶段,接触角保持不变,三相润湿周边滑动减小。毛细黏附力在气泡脱附过程中随接触角增大而增大,随三相润湿周边滑动而减小,当外力超过颗粒气泡间临界黏附力时,颗粒从气泡表面脱附。 相似文献
9.
10.
矿物的粒度是影响矿物浮选的关键因素之一,粗颗粒浮选 不仅对于缓解碎磨压力、节能降耗具有重大意义,而且有利于尾矿的资源化利用,为无尾或少尾矿山提供 了新的解决方案,因此粗颗粒浮选对于绿色矿山建设意义重大。从颗粒表面特性基因和泡沫特性基因的角度出发, 结合基因矿物加工工程的理念,综述了国内外对粗颗粒浮选技术与装备的研究进展,分别总结了机械搅拌式粗粒 浮选、粗颗粒流化床浮选和泡沫中分选(SIF 法)浮选技术的原理及其优势和不足。重点对影响粗颗粒浮选过程中的 因素进行了探讨,明确了影响粗颗粒浮选的关键因素,常规浮选技术难以从根本上提升矿石分选的粒度上限,复 合力场与浮选的结合为粗颗粒乃至超粗颗粒的浮选提供了可能,将推动矿物综合回收率的进一步提升和尾矿资源 的高消纳综合利用。 相似文献
11.
12.
脱附是导致粗颗粒浮选回收率低的重要原因。为了探究疏水性颗粒-气泡间脱附行为机理,利用自
制的浮选颗粒-气泡脱附测试系统对不同疏水性颗粒的脱附过程进行观测,借助 Image-Pro Plus 图像处理软件对颗
粒-气泡间接触角、三相润湿周边变化进行测量。结果表明:颗粒脱附过程中接触角并非保持不变,而是存在明显
的接触角滞后,接触角为 67.0°、83.9°和 98.7°的 3 种疏水性颗粒在达到前进接触角 106.7°、119.3°和 128.3°后三相润
湿周边开始滑动收缩。区别于传统三相润湿周边滑动脱附机制,发现在三相润湿周边滑动阶段为了保证颗粒前进
接触角不变,不可避免地会在颗粒表面形成反向毛细颈部,且反向毛细颈部处曲率随着三相润湿周边的收缩而快
速增加,并最终在拉普拉斯压力作用下发生断裂脱附,在颗粒表面留下微气泡。同时由于三相润湿周边滑移速度
随着颗粒疏水性的增加而降低,因此反向毛细颈部处曲率增加速率随颗粒疏水性的增加而增加,导致最终颗粒表
面残留微气泡大小也随颗粒疏水性的增加而增加。 相似文献
13.
14.
这篇论文回顾了最近发展的浮选设备的基本原理。提出了借助空穴气核来捕收颗粒的机理,理论分析空穴/气核加速颗粒-气泡吸附提高浮选速度的实际应用证明了这一机理;同时提供了改进浮选设备设计的方式,着重强调二段吸附模型。一些浮选槽采用了这个模型所取得的快速浮选的效果可解释为二段吸附作用的结果。 相似文献
15.
采用离心技术对方铅矿、石英的单矿物和混合矿的矿粒与气-黄药溶液界面的粘附强度进行了测定。对混合矿颗粒脱附和下沉时昕需的临界离心力与Nutt和Scheludko单个球粒模型的理论值进行了比较,研究了矿粒大小、初始捕收剂相分散剂浓度对粘附力和浮选效率的影响,并发现矿粒在气-液界面的粘附强度与浮选效率有密切关系。方铅矿-石英人工混合矿的脱附力测量和浮选试验的结果表明:方铅矿与石英矿粒的粒径比对方铅矿的脱附力和浮选选择性有重要影响,并发现力铅矿-石英体系的浮选选择性与混台矿中方铅矿颗粒在气-液界面的粘附强度有密切关系。 相似文献
16.
17.
18.
颗粒气泡黏附指从颗粒与气泡相遇开始到液膜发生薄化破裂最后至三相润湿周边铺展形成稳定矿化气絮体的过程,是浮选中的核心作用单元。然而浮选颗粒气泡黏附机理至今仍不明确。黏附过程主要受颗粒气泡的表面物理化学性质及溶液化学条件影响,表面力及流体作用力协同支配微纳尺度下颗粒气泡间液膜薄化破裂行为。排液过程中气液界面的变形效应进一步增加了系统复杂性,上述因素使得颗粒气泡黏附的理论研究及试验探索步履维艰。早期关于颗粒气泡黏附的研究主要聚焦于黏附概率,其中宏观尺度下的诱导时间测试占据主导地位,通过诱导时间结果计算黏附概率。对国内外宏观尺度下颗粒气泡黏附概率模型及研究技术手段进展展开全面综述,并对现有技术瓶颈及局限进行分析。诱导时间测量仪及高速动态摄影技术大大促进了浮选工作者对颗粒气泡黏附的理解,“诱导时间与实际浮选回收率具有着良好的相关关系”也已经被广泛证明。然而因微纳尺度下的表面力及液膜薄化动力学信息的缺失导致宏观诱导时间并不能从基础层面揭示颗粒气泡的黏附机理,微纳尺度下颗粒气泡间相互作用力及液膜薄化动力学的定量测试表征是技术发展的必然趋势,其可为浮选微观矿化反应过程提供新的理论视角,同时也为难浮煤及难选矿浮选过程强化提供理论支撑。 相似文献
19.
20.
在浮选过程中,由于气泡的结合、破裂及泡沫过载而使泡沫相中的疏水颗粒从气泡上脱落。当某些脱落的颗粒返回到矿浆中时,另有一部分颗粒可能会选择性地再附着于从泡沫中上升的气泡上。这样可能形成泡沫中品位变化的特性。虽然这过程未经详细研究,但定性的数据表明,这种现象出现在较深的、载荷小的泡沫中,正如浮选柱过程所出现的情况那样。已研究出一种描述上述过程的数学模型,这种模型考虑了气泡表面被可浮颗粒复盖的程度以及随 相似文献