首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过向水泥基材料中添加炭纤维制备炭纤维增强水泥基复合材料(CFRC),研究了炭纤维掺量、硅粉掺量、养护龄期等因素对其导电性能的影响。结果表明,CFRC复合材料的电阻率随着炭纤维掺量的增加而减小;掺入10%的硅粉能够显著降低CFRC复合材料的电阻率;CFRC复合材料中的炭纤维掺量低于0.6%时,电阻率随着养护龄期的延长而迅速增大,炭纤维掺量高于0.6%时电阻率增加不明显。  相似文献   

2.
新型碳纳米材料氧化石墨烯(GO)和纳米碳纤维(CNFs)在分散性良好的前提下可用于改善传统水泥基材料的性能。采用聚羧酸减水剂(PCs)、十二烷基硫酸钠(SDS)、十二烷基苯磺酸钠(SDBS)3种不同分散剂对复合GO和CNFs在水泥基材料中进行分散,研究分散剂种类对复掺GO/CNFs水泥基复合材料的力学及导电性能的影响,并通过扫描电子显微镜(SEM)对不同分散剂制备的复掺GO/CNFs水泥基试件的微观结构进行分析。结果表明:当单独使用PCs作为分散剂时,在质量分数0.05%GO和0.5%CNFs掺量下,试件的抗压强度达到最大(70.1 MPa);在0.05%GO和0.3%CNFs掺量下,试件的电阻率最小(112.65 Ω·m),且在加载条件下表现出良好的电阻率-应力变化响应。而采用SDS、SDBS两种离子型分散剂时,在GO/CNFs混合分散液的配制和试件制备过程中均会产生大量绵密且难以排出的气泡,使得水泥基复合材料的内部结构疏松,抗压强度降低,电阻率变大,导电性能下降。使用PCs单独分散的GO/CNFs水泥基试件表面水化产物结构致密,而采用SDS分散时水泥基试件微观结构疏松,且仅在100倍下即可观察到表面存在大量孔隙,因此使用PCs分散GO/CNFs对水泥基复合材料性能改善的效果最好。  相似文献   

3.
石墨-水泥基复合材料的制备与性能   总被引:3,自引:0,他引:3  
为提高水泥基材料的抗电磁干扰性能,制备了石墨-水泥基复合材料,测试了材料的电阻率、电磁屏蔽效能和力学性能.结果表明:对石墨-水泥基复合材料,在一定范围内,随掺入的石墨质量分数(下同)的增加,材料电阻率呈下降趋势.石墨掺入量为5%~10%时复合材料电阻率下降非常明显,超过15%以后,电阻率变化已不太明显;随着石墨掺量的增加,复合材料的电磁屏蔽效能也逐渐增大,石墨掺入量为15%时达到最大值,而抗折强度及抗压强度则随着石墨掺入量的增加有所下降.  相似文献   

4.
碳纳米管/水泥基复合材料导电性与力敏特性研究   总被引:3,自引:0,他引:3  
为改善水泥基复合材料的导电性,通过添加一定掺量的碳纳米管,制备了碳纳米管/水泥基复合材料。采用四电极伏安法和扫描电子显微镜的测试方法研究了碳纳米管的掺量对碳纳米管/水泥基复合材料的导电性和力敏特性的影响。试验结果表明,0.05%~0.5%的碳纳米管掺量处于渗流区内,此时试件的电阻率随碳纳米管掺量的增加而降低;在循环轴压应力作用下,试件的电阻率随应力的增大而减小,随应力的减小而增大,且变化曲线呈可回复近似单调的变化规律,同时试件的电阻相对变化率以及力敏灵敏度随碳纳米管掺量的增加而增大,显示出良好的力敏特性。这表明碳纳米管/水泥基复合材料的导电性与其受载过程有着密切的关联性,从而有望用于混凝土内部应力及损伤的监测。  相似文献   

5.
为优化水泥基复合材料的电学性能,以碳纤维(CF)和钢纤维(SF)为导电材料,通过抗压强度试验、交流阻抗测试、扫描电镜测试和升温试验,研究了碳纤维和钢纤维的体积掺量对水泥基复合材料抗压强度和电学性能的影响。结果表明,碳纤维-钢纤维水泥基复合材料的抗压强度随碳纤维掺量增大呈先增大后减小的趋势。碳纤维、钢纤维的渗滤阈值分别为0.35%和0.6%(均为体积分数),复掺碳纤维和钢纤维使水泥基复合材料的导电性能大幅增强,产生了明显的正向混杂效应,碳纤维和钢纤维体积掺量达到渗滤阈值后,继续增大纤维掺量对导电性能的提升作用不大。用ZSimp Win软件拟合得到等效电路各电路元件数值,并结合SEM照片分析了导电机制。碳纤维-钢纤维水泥基复合材料具有良好的电热性能,当输入功率为7.9 W,通电30 min、60 min、90 min后,其平均温度可达到33℃、43℃、50℃,通过曲线拟合得到了温度随时间变化的回归方程。  相似文献   

6.
左俊卿  房霆宸  廖刚 《硅酸盐通报》2019,38(12):3922-392
研究了碳纳米管-碳纤维水泥基材料(CNT-CF/水泥基材料)导电性能,并分析了CNT-CF/水泥基材料导电机制.研究了导电填料含量、水灰比、龄期、湿含量等因素对复合材料导电性能的影响.结果 表明:CNT-CF/水泥基材料导电性能良好,电阻率数量级控制在102 Ω·cm以下.最优导电组合配比为碳纤维掺量0.4wt%,碳纳米管掺量0.5wt%.CNT-CF/水泥基材料电阻率随碳纳米管掺量由0.1wt%增加到0.5wt%而减小,由0.5wt%增加到2.0wt%而增大.试样水灰比的提高在一定程度上能降低CNT-CF/水泥基材料电阻率.CNT-CF/水泥基材料电阻率在龄期0~7d减小趋势,在7~28 d有增大趋势.CNT-CF/水泥基材料湿含量越大,其电阻变化率越大,且二者具有良好的线性关系.  相似文献   

7.
为解决复杂环境下混凝土材料的耐久性以及力学性能等问题,以纳米材料作为水泥基材料的增强组份,添加碳纳米管(CNTs)制备了一种碳纳米管水泥基复合材料。研究了该水泥基复合材料的力学性能、流变性能,采用氯离子渗透深度来对该水泥基复合材料的耐久性能进行了评价。通过测试分析了不同碳纳米管掺量的水泥基复合材料的力学性能和耐久性,并通过SEM(扫描电镜)分析了碳纳米管水泥基复合材料的微观结构。结果表明CNTs能显著提高水泥基材料的力学性能以及耐久性,改善水泥基材料孔结构,同时能提高水泥基材料的抗氯离子渗透性能。  相似文献   

8.
通过在水泥基材料中掺入东丽T300、卓尔泰克PX35、中复神鹰SYT45三种不同碳纤维,研究了碳纤维种类、拨开方式对复合材料导电性能和抗压强度的影响。研究结果表明,碳纤维水泥基材料电阻率随着碳纤维掺量增加呈数量级降低,T300型碳纤维在低掺量下能有效降低水泥基材料电阻率。采用层层拨捻有利于纤维的分散,但在捻开过程中,纤维表面碳的损失降低了碳纤维水泥基材料导电性。SYT…45-CB碳纤维水泥基材料电阻率最大。四极法规避了电极电阻和接触电阻,所测得的电阻率更接近真实值。T300型碳纤维水泥基材料抗压强度优于PX35型碳纤维水泥基材料。层层拨捻分散方式提高纤维均布性,增加了碳纤维水泥基材料的强度。  相似文献   

9.
将碳纳米管分散于水泥基材料中,制备得到碳纳米管水泥基复合材料(CNT/CC)。研究了多壁碳纳米管(multj-walled nanotubes,简称MWNTs)掺量为0.05%的CNT/CC试件,探讨了相关测试参数以及龄期对试件电阻率的影响,并对比了硅灰的掺加对试件导电性能的作用。进一步研究了其在弹性范围应力作用下试件的循环压敏性能,以及埋置大试件中其循环压敏性能,探讨其用于结构应力监测的可行性。研究结果表明,10V测试电压30min时试件的电阻率相对稳定,并且当试件养护到28d后,试件的电阻率基本保持不变。未掺加硅灰后试件的电阻率远小于掺加硅灰的试件。进一步研究发现,试件电阻率能够随应力的变化呈线性变化,且呈现良好的循环性能。埋置大试件后,表现出良好的循环压敏特性,且保持相当的一致性。  相似文献   

10.
为揭示混掺纤维对应变硬化水泥基复合材料力学性能和变形行为的影响规律,研究了玄武岩–聚乙烯醇(PVA)纤维应变硬化水泥基复合材料的抗拉、抗压性能及压应变演化特征.设计了纤维掺量为材料体积分数的2%,玄武岩纤维和PVA纤维掺量比分别为3:1、1:1和1:3,同时控制粉煤灰与水泥掺量的比值(FA/C)分别为1.2、1.5和2...  相似文献   

11.
采用两种纳米粒子(纳米SiO2和纳米CaCO3),通过水泥基复合材料抗裂性能试验,探讨了PVA纤维和纳米粒子单掺和复掺两种情况下PVA纤维用量、纳米材料种类和用量对水泥基复合材料抗裂性能的影响.研究结果表明,在PVA纤维增强水泥基复合材料中掺入纳米SiO2,可以显著提高水泥基复合材料抗裂性能,而且在本文试验纳米粒子掺量范围内,水泥基复合材料抗裂性能随着纳米SiO2掺量的增加不断增强;在纳米SiO2水泥基复合材料中掺入PVA纤维,可以提高水泥基复合材料的抗裂性能,当纤维体积掺量不大于1.2%时,PVA纤维体积掺量较大的纳米水泥基复合材料具有较高的抗裂性能;纳米CaCO3与纳米SiO2均能增强水泥基复合材料的抗裂性能,纳米SiO2的增强效果略优于纳米CaCO3.  相似文献   

12.
张喜娥 《硅酸盐通报》2015,34(9):2686-2690
作为新型纳米材料,碳纳米管(MWCNTs)已经应用于水泥基材料中用以改善水泥基材料性能.本文采用十六烷基三甲基溴化铵作为分散剂将碳纳米管均匀分散于水泥材料中制备成碳纳米管水泥基复合材料,并细致研究了其力学性能和抗冻性能.结果表明碳纳米管的加入能够有效的增加水泥基材料的力学性能和抗冻性能.当碳纳米管的掺量为0.1%时,碳纳米管水泥基复合材料的力学性能达到最大,其抗折强度和抗压强度分别为17.5MPa和92.3 MPa.在300次冻融循环过程中,碳纳米管水泥基复合材料的质量损失率和动弹模量变化率偏低,表明碳纳米管水泥基复合材料的抗冻性得到了增强.SEM微观分析表明,碳纳米管在水泥基材料中起到了桥联和拔出效应,能够有效的延缓和阻止水泥基材料受到外界的破坏.  相似文献   

13.
采用聚羧酸系减水剂分散多壁碳纳米管( MWCNTs ),利用四电极法研究了 MWCNTs 掺量对28 d 龄期MWCNTs水泥基复合材料导电特性和在循环荷载作用下压敏性能的影响以及不同最大加载力和加载速率下材料压敏性能的变化。研究表明:随 MWCNTs 掺量的增加,复合材料的电阻率逐渐降低,极化时间逐渐减少。当MWCNTs的掺量在0.06wt%~0.3wt%范围时,复合材料电阻率的变化最大,在循环荷载作用下也表现出良好的压敏性。当加载至试块破坏的情况下,最大电阻变化率可达到70%。随着加载力和加载速率的增加,电阻率的变化率均逐渐变大。本项研究对于实现混凝土材料的智能化以及工程结构检测的实时化具有重要意义。  相似文献   

14.
钢渣对碳纤维水泥基材料温敏性能的影响   总被引:1,自引:0,他引:1  
通过试验研究了钢渣对碳纤维水泥基材料在升温和降温过程中的Seebeck系数及电阻率的影响。研究结果表明:在碳纤维水泥基材料中掺入钢渣,可以提高水泥基材料Seebeck系数,随着钢渣掺量的增加,碳纤维水泥基材料的Seebeck系数先增大后减小;电阻率随着钢渣掺量的增加而减小,并且存在渗流现象。  相似文献   

15.
通过正交试验,分析了氧化石墨烯(GO)掺量、沙漠砂替代率、水灰比和胶砂比对GO-沙漠砂水泥基复合材料28 d的抗压强度、抗折强度和稠度值的影响趋势.在正交试验基础上,进一步揭示沙漠砂替代率和GO掺量对复合材料7d、28 d抗压强度和抗折强度的影响规律.试验研究表明:随着GO掺量的增加,水泥基复合材料抗折和抗压强度先提高后降低,且对于抗压强度增强效果略超过抗折强度.当GO掺量为0.03wt%时,GO-沙漠砂砂浆试块抗压强度和抗折强度达到最大值;随着沙漠砂替代率增加,GO-沙漠砂砂浆试块抗折和抗压强度呈现先增大后减小趋势,沙漠砂替代率为50%时,氧化石墨烯沙漠砂砂浆试块抗压强度和抗折强度均达到最大值;但沙漠砂替代率为100%时,掺量为0.03wt%的GO-全沙漠沙水泥基材料强度提升最高,且28 d抗压、抗折强度可达标准砂试块强度.通过SEM对GO增强沙漠砂水泥基复合材料微观结构进行表征,发现GO能够优化水泥水化产物的微观结构形态,并且与沙漠砂活性材料产生正相关作用,从而形成更加致密均匀的结构改善沙漠砂水泥基复合材料的宏观性能.  相似文献   

16.
魏华  张鹏  王娟  张天航 《硅酸盐通报》2020,39(6):1709-1714
为研究纳米粒子种类和掺量以及石英砂粒径对聚乙烯醇纤维(PVA纤维)水泥基复合材料单轴拉伸性能的影响,通过单轴拉伸试验测得了试件的极限拉应变和极限拉应力,并得到了试件应力-应变关系曲线.PVA纤维的体积掺量为0.9%,选择纳米SiO2质量掺量和石英砂粒径各四种.结果 表明,纳米SiO2的掺加对PVA纤维水泥基复合材料抗拉伸性能有一定的提高,随着纳米SiO2掺量从0%增大到2.5%,试件极限拉应变和极限拉应力整体上呈逐渐增大趋势.相对于纳米CaCO3,纳米SiO2对PVA纤维水泥基复合材料抗拉伸性能的增强效果更明显.石英砂的粒径对PVA纤维水泥基复合材料抗拉性能影响较大,石英砂的粒径越小,PVA纤维水泥基复合材料的极限拉应变和极限拉应力越低.  相似文献   

17.
戚瑞  田威  王峰  赵丙伟 《硅酸盐通报》2019,38(3):653-658
为了研究不同掺量以及不同直径多壁碳纳米管(MWCNTs)对水泥基试样力学性能的影响,分别采用直径为10~20 nm、20~40 nm、40~60 nm的三种MWCNTs制备了不同掺量的MWCNTs水泥基试样,并对水泥基试样进行了力学性能试验.通过孔径分析仪(MIP)和扫描电子显微镜(SEM)分别对不同直径及不同掺量的MWCNTs水泥基试样的孔隙结构和微观结构进行了研究.试验结果表明:使用相同直径MWCNTs的水泥基试样中,抗压强度和抗折强度分别在较低掺量为0.1wt%和0.2wt%时提升最为明显,孔隙率随着MWCNTs掺量的增加而增大;而使用相同MWCNTs掺量的水泥基试样中,MWCNTs直径为10~20 nm的抗压强度提升最为明显,直径为40~60 nm的抗折强度提升最为明显,孔隙率随着MWCNTs直径的增大而增大.另外通过扫描电镜分析还发现,不同直径不同掺量的MWCNTs在水泥基试样中起到了桥联和拔出作用,能有效的阻止裂缝的传播和发展.  相似文献   

18.
王悦  王琴  郑海宇  詹达富 《硅酸盐通报》2021,40(8):2515-2526
石墨烯能显著改善水泥基复合材料的压敏性能,而分散剂是影响石墨烯分散以及复合材料性能的关键因素。本文通过紫外分光光度仪、超景深显微镜、激光粒度仪及Zeta电位测试,研究了聚羧酸减水剂(PCE)、聚氧乙烯(20)山梨醇酐单月桂酸酯(TW-20)、十二烷基磺酸钠(SDS)、十二烷基苯磺酸钠(SDBS)4种分散剂对石墨烯分散性能的影响,并通过直流二电极、直流四电极和交流二电极测试研究了4种分散剂对石墨烯水泥基复合材料导电性能和压敏性能的影响。结果表明:在去离子水和水泥孔溶液中,PCE由于静电斥力和空间位阻的协同作用,对石墨烯具有良好的分散性;而在水泥孔溶液中,TW-20、SDS、SDBS与Ca2+之间的络合作用导致分散效率显著下降。石墨烯水泥基复合材料的导电和压敏性能与石墨烯在水泥基体中的分散性密切相关,掺PCE的石墨烯水泥基复合材料的电阻率最小,压敏性能最优。另外,SDS、SDBS的引气作用也会影响水泥基体的孔结构,导致电阻率增大,压敏性变差。  相似文献   

19.
为研究PVA纤维掺量、纳米粒子掺量和种类对水泥基复合材料抗渗性能的影响,通过抗渗性试验测得了各组抗渗试件的渗水高度。纳米粒子的质量掺量分别为0.5%,1%,1.5%,2%,2.5%,PVA纤维的体积掺量分别为0.3%,0.6%,0.9%,1.2%,采用的纳米粒子包括纳米Si O2和纳米Ca CO3。研究结果表明,纳米Si O2可以显著提高PVA纤维增强水泥基复合材料抗渗性能,而且在纳米Si O2掺量低于2.5%的范围内,抗渗性能随着纳米Si O2掺量的增加不断增强;PVA纤维可明显提高纳米水泥基复合材料的抗渗性能,当纤维体积掺量不大于1.2%时,纤维体积掺量较大的纳米水泥基复合材料具有较高的抗渗性能;纳米Ca CO3与纳米Si O2均能提高水泥基复合材料的抗渗性能,纳米Si O2的提高效果略优于纳米Ca CO3。  相似文献   

20.
将多壁碳纳米管(MWCNTs)按照一定比例掺入到白水泥净浆和白水泥砂浆中,对MWCNTs水泥基复合材料的抗压强度、不同频率下电阻特性和微观结构进行试验研究,试验结果表明:MWCNTs白水泥净浆和白水泥砂浆的抗压强度随着MWCNTs掺入量的增加,先提高,而后降低,当MWCNTs掺量为0.3wt%时,白水泥净浆和砂浆的抗压强度改善效果最明显;不同MWCNTs掺量的白水泥净浆和白水泥砂浆的电阻率均随着测试频率的升高而降低,并且低频时电阻率随频率降低的速度较慢,而高频时电阻率随频率降低的速率较快;MWCNTs白水泥净浆和MWCNTs白水泥砂浆的电阻率,均随MWCNTs掺入量的增高而降低;MWCNTs白水泥净浆和MWCNTs白水泥砂浆的电阻率均随着龄期的增加而增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号